File: sg_unaligned.h

package info (click to toggle)
ddpt 0.95-1
  • links: PTS
  • area: main
  • in suites: bullseye, buster
  • size: 1,772 kB
  • sloc: ansic: 21,845; sh: 5,153; makefile: 155
file content (251 lines) | stat: -rw-r--r-- 6,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#ifndef SG_UNALIGNED_H
#define SG_UNALIGNED_H

/*
 * Copyright (c) 2014 Douglas Gilbert.
 * All rights reserved.
 * Use of this source code is governed by a BSD-style
 * license that can be found in the BSD_LICENSE file.
 */

#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

/* Borrowed from the Linux kernel, via mhvtl */

/* In the first section below, functions that copy unsigned integers in
 * a computer's native format, to and from an unaligned big endian sequence
 * of bytes. Big endian byte format "on the wire" is the default used by
 * SCSI standards (www.t10.org). */

static inline uint16_t __get_unaligned_be16(const uint8_t *p)
{
        return p[0] << 8 | p[1];
}

static inline uint32_t __get_unaligned_be32(const uint8_t *p)
{
        return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3];
}

static inline uint64_t __get_unaligned_be64(const uint8_t *p)
{
        return (uint64_t)__get_unaligned_be32(p) << 32 |
               __get_unaligned_be32(p + 4);
}

static inline void __put_unaligned_be16(uint16_t val, uint8_t *p)
{
        *p++ = val >> 8;
        *p++ = val;
}

static inline void __put_unaligned_be32(uint32_t val, uint8_t *p)
{
        __put_unaligned_be16(val >> 16, p);
        __put_unaligned_be16(val, p + 2);
}

static inline void __put_unaligned_be64(uint64_t val, uint8_t *p)
{
        __put_unaligned_be32(val >> 32, p);
        __put_unaligned_be32(val, p + 4);
}

static inline uint16_t sg_get_unaligned_be16(const void *p)
{
        return __get_unaligned_be16((const uint8_t *)p);
}

static inline uint32_t sg_get_unaligned_be24(const uint8_t *p)
{
        return p[0] << 16 | p[1] << 8 | p[2];
}

static inline uint32_t sg_get_unaligned_be32(const void *p)
{
        return __get_unaligned_be32((const uint8_t *)p);
}

static inline uint64_t sg_get_unaligned_be64(const void *p)
{
        return __get_unaligned_be64((const uint8_t *)p);
}

static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
        __put_unaligned_be16(val, (uint8_t *)p);
}

static inline void sg_put_unaligned_be24(uint32_t val, void *p)
{
        ((uint8_t *)p)[0] = (val >> 16) & 0xff;
        ((uint8_t *)p)[1] = (val >> 8) & 0xff;
        ((uint8_t *)p)[2] = val & 0xff;
}

static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
        __put_unaligned_be32(val, (uint8_t *)p);
}

static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
        __put_unaligned_be64(val, (uint8_t *)p);
}

/* Since cdb and parameter blocks are often memset to zero before these
 * unaligned function partially fill them, then check for a val of zero
 * and ignore if it is with these variants. */
static inline void sg_nz_put_unaligned_be16(uint16_t val, void *p)
{
        if (val)
                __put_unaligned_be16(val, (uint8_t *)p);
}

static inline void sg_nz_put_unaligned_be24(uint32_t val, void *p)
{
        if (val) {
                ((uint8_t *)p)[0] = (val >> 16) & 0xff;
                ((uint8_t *)p)[1] = (val >> 8) & 0xff;
                ((uint8_t *)p)[2] = val & 0xff;
        }
}

static inline void sg_nz_put_unaligned_be32(uint32_t val, void *p)
{
        if (val)
                __put_unaligned_be32(val, (uint8_t *)p);
}

static inline void sg_nz_put_unaligned_be64(uint64_t val, void *p)
{
        if (val)
            __put_unaligned_be64(val, (uint8_t *)p);
}


/* Below are the little endian equivalents of the big endian functions
 * above. Little endian is used by ATA, networking and PCI.
 * This section could take advantage of the
 * 'uint32_t htonl(uint32_t hostlong)' [and the complementary ntohl()]
 * family of functions but that would introduce a dependency on the
 * <arpa/inet.h> header. Also they don't address moving to and from
 * an unaligned sequence of bytes. The latter would still need to be
 * done.
 */

static inline uint16_t __get_unaligned_le16(const uint8_t *p)
{
        return p[1] << 8 | p[0];
}

static inline uint32_t __get_unaligned_le32(const uint8_t *p)
{
        return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0];
}

static inline uint64_t __get_unaligned_le64(const uint8_t *p)
{
        return (uint64_t)__get_unaligned_le32(p + 4) << 32 |
               __get_unaligned_le32(p);
}

static inline void __put_unaligned_le16(uint16_t val, uint8_t *p)
{
        *p++ = val;
        *p++ = val >> 8;
}

static inline void __put_unaligned_le32(uint32_t val, uint8_t *p)
{
        __put_unaligned_le16(val >> 16, p + 2);
        __put_unaligned_le16(val, p);
}

static inline void __put_unaligned_le64(uint64_t val, uint8_t *p)
{
        __put_unaligned_le32(val >> 32, p + 4);
        __put_unaligned_le32(val, p);
}

static inline uint16_t sg_get_unaligned_le16(const void *p)
{
        return __get_unaligned_le16((const uint8_t *)p);
}

static inline uint32_t sg_get_unaligned_le24(const uint8_t *p)
{
        return p[2] << 16 | p[1] << 8 | p[0];
}

static inline uint32_t sg_get_unaligned_le32(const void *p)
{
        return __get_unaligned_le32((const uint8_t *)p);
}

static inline uint64_t sg_get_unaligned_le64(const void *p)
{
        return __get_unaligned_le64((const uint8_t *)p);
}

static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
        __put_unaligned_le16(val, (uint8_t *)p);
}

static inline void sg_put_unaligned_le24(uint32_t val, void *p)
{
        ((uint8_t *)p)[2] = (val >> 16) & 0xff;
        ((uint8_t *)p)[1] = (val >> 8) & 0xff;
        ((uint8_t *)p)[0] = val & 0xff;
}

static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
        __put_unaligned_le32(val, (uint8_t *)p);
}

static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
        __put_unaligned_le64(val, (uint8_t *)p);
}

/* Since cdb and parameter blocks are often memset to zero before these
 * unaligned function partially fill them, then check for a val of zero
 * and ignore if it is with these variants. */
static inline void sg_nz_put_unaligned_le16(uint16_t val, void *p)
{
        if (val)
                __put_unaligned_le16(val, (uint8_t *)p);
}

static inline void sg_nz_put_unaligned_le24(uint32_t val, void *p)
{
        if (val) {
                ((uint8_t *)p)[2] = (val >> 16) & 0xff;
                ((uint8_t *)p)[1] = (val >> 8) & 0xff;
                ((uint8_t *)p)[0] = val & 0xff;
        }
}

static inline void sg_nz_put_unaligned_le32(uint32_t val, void *p)
{
        if (val)
                __put_unaligned_le32(val, (uint8_t *)p);
}

static inline void sg_nz_put_unaligned_le64(uint64_t val, void *p)
{
        if (val)
            __put_unaligned_le64(val, (uint8_t *)p);
}

#ifdef __cplusplus
}
#endif

#endif /* SG_UNALIGNED_H */