1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<!-- $Id: dist.html 313 2009-06-11 05:44:13Z thomasoa $ -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<LINK REL="SHORTCUT ICON" HREF="/icon/bridge.ico">
<link rev="made" href="mailto:thomaso@centerline.com (Thomas Andrews)">
<link rel="stylesheet" type="text/css" href="look.css">
<title>
Hand Distribution Table
</title>
</head>
<body>
<div class="toplevel back"><a href="index.html">Back to <em>Deal Top Page</em></a></div>
<div class="toplevel">
<h1> Hand Distribution Table </h1>
<p>
I am including this information in my web pages because I think it is
neat and that it is a method I think other writers of hand generators
might want to use.
<p>
It is also the only time I can think of when I have
used anything I learned in graduate school.
<h2> Creation of the table </h2>
<p>
My program, 'Deal', needed a fast way to determine whether a hand
was in a particular class. The goal was to stay out of the TCL interpreter
as much as possible. The answer was to implement a lookup table with an easy
indexing algorithm.
<p>
There are 560 hand shapes, where by "shape", I mean the ordered listing
of suit lengths: spades-hearts-diamonds-clubs.
<p>
The hand shapes are in easy 1-1 correspondence with the 3-subsets
of {0,...,15}.
In particular, the hand shape with <var>s</var> spades, <var>h</var> hearts,
<var>d</var> diamonds, and <var>c</var> clubs corresponds
to the 3-set {<var>s</var>, <var>s</var>+<var>h</var>+1,
<var>s</var>+<var>h</var>+<var>d</var>+2}.
<p>
There is a linear order on n-subsets, for fixed n, called the squashed
order [see <span class="reference">Combinatorics on Finite Sets</span>, Anderson, pp 112-119.]
The nice thing about this order is that it is easy to find the index of
an n-set in the order.
In the case of n=3, take a subset {x,y,z}, with 0<=x<y<z<=15.
The index of this set in the squashed order is
<blockquote>(z choose 3) + (y choose 2) + (x choose 1)</blockquote>
For the hand shape s-h-d-c, then, the corresponding index in the squashed
order is
<blockquote>(s+h+d+2 choose 3) + (s+h+1 choose 2) + (s choose 1)</blockquote>
<p>
For added speed, I pre-computed
(n+2 choose 3) and (n+1 choose 2) for n=0,...13, placing the values
in static arrays. The resulting C code looks like:
<blockquote>
<pre>
static int distTableIndex(s,h,d)
int s,h,d;
{
static choose2tab[]={0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91};
static choose3tab[]={0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455};
return choose3tab[s+h+d]+choose2tab[s+h]+s;
}
</pre>
</blockquote>
It is precisely because I can quickly compute this index that I have
chosen the squashed order. Perhaps other orders also happen to allow
for quick indexing, but this is the one I found in my personal math library.
<h2> Usage of the table </h2>
The table is useful for fast lookups. For example, lets say you were
looking for hands which were five-five or better in any two suits. You could,
of course, simply check each suit length, but the problem with this is
that in an interpreted language, like Tcl, that might be too slow. If,
however, you built a 560 element binary array, and do the computation
560 times up front, then when we start analyzing actual deals, we
can quickly determine whether a particular shape was in that class.
<p>
In reality, the table is not computed until the first request
is made of a shapeclass, which allows users to create large libraries
to be included but not instantiated until used.
<p>
For example:
<blockquote>
<pre>
shapecond Balanced {$s*$s+$h*$h+$d*$d+$c*$c<=47}
</pre>
</blockquote>
When this shapeclass is first used, a table of 560 entries is created,
and then the interpreter evaluates this expression only 560 times.
For rare hand classes, this is a significant improvement.
<p>
When Deal is confronted with a specific query about membership
in this class, all it has to do is use distTableIndex find the
index, then look it up in the table. This is significantly
faster than reinterpreting the Tcl code every time.
<p>
The concept of "shape class" led to the concept of "shape function".
These are functions which use the shape of the hand to determine the
value. For instance, I have a function which determines the opening
suit for a hand:
<blockquote>
<pre>
shapefunc opensuit {
if {$s>=5 && $s>=$h && $s>=$d && $s>=$c} {return spades}
if {$h>=5 && $h>=$d && $h>=$c} { return hearts }
if {$d>=4 && $d>=$c} {return diamonds}
if {$c<3} {return diamonds}
return clubs
}
</pre>
</blockquote>
[ The current implementation of shapefunc is a bit of a memory hog,
unfortunately, since it allocates strings for every element of the
table, even if the strings are duplicates. For instance, the function
above has only 4 return values, "spades", "hearts", "diamonds", and "clubs".
Still, shapefunc instantiates 560 strings. Smarter implementations
are certainly possible, and Tcl 8.0 alleviates the problem considerably
(because it allows deals with reference-counted strings.) ]
<p>
[ We could also instantiate the table an entry at a time, leaving null pointers
in the table until a value has been requested. This has the advantage that
we will often compute considerably fewer values from the table. The
disadvantage is that every time we need a value from the table, we will have
to do a check to see if a pointer value is null. It
is not clear to me this would be an improvement or not, but it would
add a complexity to the code that I am not willing to maintain. It might
seem that you would need to check a pointer anyway, to determine if the
shapeclass has been instantiated or not, but the implementation avoids
such a check.]
<h3> Note </h3>
The above definition of Balanced is an interesting oddity,
which I leave it up to the reader to try to understand.
Think about it for a moment before you look <a href=balanswer.html>here</a>.
<h2> Table </h2>
Here is the raw data of the table. Not very interesting, but it does
help to make it clear how the squashed ordering works, and why the index
values are computed as they are.
<xmp>
Index| S H D C
==================
0 | 0 0 0 13
1 | 0 0 1 12
2 | 0 1 0 12
3 | 1 0 0 12
4 | 0 0 2 11
5 | 0 1 1 11
6 | 1 0 1 11
7 | 0 2 0 11
8 | 1 1 0 11
9 | 2 0 0 11
10 | 0 0 3 10
11 | 0 1 2 10
12 | 1 0 2 10
13 | 0 2 1 10
14 | 1 1 1 10
15 | 2 0 1 10
16 | 0 3 0 10
17 | 1 2 0 10
18 | 2 1 0 10
19 | 3 0 0 10
20 | 0 0 4 9
21 | 0 1 3 9
22 | 1 0 3 9
23 | 0 2 2 9
24 | 1 1 2 9
25 | 2 0 2 9
26 | 0 3 1 9
27 | 1 2 1 9
28 | 2 1 1 9
29 | 3 0 1 9
30 | 0 4 0 9
31 | 1 3 0 9
32 | 2 2 0 9
33 | 3 1 0 9
34 | 4 0 0 9
35 | 0 0 5 8
36 | 0 1 4 8
37 | 1 0 4 8
38 | 0 2 3 8
39 | 1 1 3 8
40 | 2 0 3 8
41 | 0 3 2 8
42 | 1 2 2 8
43 | 2 1 2 8
44 | 3 0 2 8
45 | 0 4 1 8
46 | 1 3 1 8
47 | 2 2 1 8
48 | 3 1 1 8
49 | 4 0 1 8
50 | 0 5 0 8
51 | 1 4 0 8
52 | 2 3 0 8
53 | 3 2 0 8
54 | 4 1 0 8
55 | 5 0 0 8
56 | 0 0 6 7
57 | 0 1 5 7
58 | 1 0 5 7
59 | 0 2 4 7
60 | 1 1 4 7
61 | 2 0 4 7
62 | 0 3 3 7
63 | 1 2 3 7
64 | 2 1 3 7
65 | 3 0 3 7
66 | 0 4 2 7
67 | 1 3 2 7
68 | 2 2 2 7
69 | 3 1 2 7
70 | 4 0 2 7
71 | 0 5 1 7
72 | 1 4 1 7
73 | 2 3 1 7
74 | 3 2 1 7
75 | 4 1 1 7
76 | 5 0 1 7
77 | 0 6 0 7
78 | 1 5 0 7
79 | 2 4 0 7
80 | 3 3 0 7
81 | 4 2 0 7
82 | 5 1 0 7
83 | 6 0 0 7
84 | 0 0 7 6
85 | 0 1 6 6
86 | 1 0 6 6
87 | 0 2 5 6
88 | 1 1 5 6
89 | 2 0 5 6
90 | 0 3 4 6
91 | 1 2 4 6
92 | 2 1 4 6
93 | 3 0 4 6
94 | 0 4 3 6
95 | 1 3 3 6
96 | 2 2 3 6
97 | 3 1 3 6
98 | 4 0 3 6
99 | 0 5 2 6
100 | 1 4 2 6
101 | 2 3 2 6
102 | 3 2 2 6
103 | 4 1 2 6
104 | 5 0 2 6
105 | 0 6 1 6
106 | 1 5 1 6
107 | 2 4 1 6
108 | 3 3 1 6
109 | 4 2 1 6
110 | 5 1 1 6
111 | 6 0 1 6
112 | 0 7 0 6
113 | 1 6 0 6
114 | 2 5 0 6
115 | 3 4 0 6
116 | 4 3 0 6
117 | 5 2 0 6
118 | 6 1 0 6
119 | 7 0 0 6
120 | 0 0 8 5
121 | 0 1 7 5
122 | 1 0 7 5
123 | 0 2 6 5
124 | 1 1 6 5
125 | 2 0 6 5
126 | 0 3 5 5
127 | 1 2 5 5
128 | 2 1 5 5
129 | 3 0 5 5
130 | 0 4 4 5
131 | 1 3 4 5
132 | 2 2 4 5
133 | 3 1 4 5
134 | 4 0 4 5
135 | 0 5 3 5
136 | 1 4 3 5
137 | 2 3 3 5
138 | 3 2 3 5
139 | 4 1 3 5
140 | 5 0 3 5
141 | 0 6 2 5
142 | 1 5 2 5
143 | 2 4 2 5
144 | 3 3 2 5
145 | 4 2 2 5
146 | 5 1 2 5
147 | 6 0 2 5
148 | 0 7 1 5
149 | 1 6 1 5
150 | 2 5 1 5
151 | 3 4 1 5
152 | 4 3 1 5
153 | 5 2 1 5
154 | 6 1 1 5
155 | 7 0 1 5
156 | 0 8 0 5
157 | 1 7 0 5
158 | 2 6 0 5
159 | 3 5 0 5
160 | 4 4 0 5
161 | 5 3 0 5
162 | 6 2 0 5
163 | 7 1 0 5
164 | 8 0 0 5
165 | 0 0 9 4
166 | 0 1 8 4
167 | 1 0 8 4
168 | 0 2 7 4
169 | 1 1 7 4
170 | 2 0 7 4
171 | 0 3 6 4
172 | 1 2 6 4
173 | 2 1 6 4
174 | 3 0 6 4
175 | 0 4 5 4
176 | 1 3 5 4
177 | 2 2 5 4
178 | 3 1 5 4
179 | 4 0 5 4
180 | 0 5 4 4
181 | 1 4 4 4
182 | 2 3 4 4
183 | 3 2 4 4
184 | 4 1 4 4
185 | 5 0 4 4
186 | 0 6 3 4
187 | 1 5 3 4
188 | 2 4 3 4
189 | 3 3 3 4
190 | 4 2 3 4
191 | 5 1 3 4
192 | 6 0 3 4
193 | 0 7 2 4
194 | 1 6 2 4
195 | 2 5 2 4
196 | 3 4 2 4
197 | 4 3 2 4
198 | 5 2 2 4
199 | 6 1 2 4
200 | 7 0 2 4
201 | 0 8 1 4
202 | 1 7 1 4
203 | 2 6 1 4
204 | 3 5 1 4
205 | 4 4 1 4
206 | 5 3 1 4
207 | 6 2 1 4
208 | 7 1 1 4
209 | 8 0 1 4
210 | 0 9 0 4
211 | 1 8 0 4
212 | 2 7 0 4
213 | 3 6 0 4
214 | 4 5 0 4
215 | 5 4 0 4
216 | 6 3 0 4
217 | 7 2 0 4
218 | 8 1 0 4
219 | 9 0 0 4
220 | 0 0 10 3
221 | 0 1 9 3
222 | 1 0 9 3
223 | 0 2 8 3
224 | 1 1 8 3
225 | 2 0 8 3
226 | 0 3 7 3
227 | 1 2 7 3
228 | 2 1 7 3
229 | 3 0 7 3
230 | 0 4 6 3
231 | 1 3 6 3
232 | 2 2 6 3
233 | 3 1 6 3
234 | 4 0 6 3
235 | 0 5 5 3
236 | 1 4 5 3
237 | 2 3 5 3
238 | 3 2 5 3
239 | 4 1 5 3
240 | 5 0 5 3
241 | 0 6 4 3
242 | 1 5 4 3
243 | 2 4 4 3
244 | 3 3 4 3
245 | 4 2 4 3
246 | 5 1 4 3
247 | 6 0 4 3
248 | 0 7 3 3
249 | 1 6 3 3
250 | 2 5 3 3
251 | 3 4 3 3
252 | 4 3 3 3
253 | 5 2 3 3
254 | 6 1 3 3
255 | 7 0 3 3
256 | 0 8 2 3
257 | 1 7 2 3
258 | 2 6 2 3
259 | 3 5 2 3
260 | 4 4 2 3
261 | 5 3 2 3
262 | 6 2 2 3
263 | 7 1 2 3
264 | 8 0 2 3
265 | 0 9 1 3
266 | 1 8 1 3
267 | 2 7 1 3
268 | 3 6 1 3
269 | 4 5 1 3
270 | 5 4 1 3
271 | 6 3 1 3
272 | 7 2 1 3
273 | 8 1 1 3
274 | 9 0 1 3
275 | 0 10 0 3
276 | 1 9 0 3
277 | 2 8 0 3
278 | 3 7 0 3
279 | 4 6 0 3
280 | 5 5 0 3
281 | 6 4 0 3
282 | 7 3 0 3
283 | 8 2 0 3
284 | 9 1 0 3
285 |10 0 0 3
286 | 0 0 11 2
287 | 0 1 10 2
288 | 1 0 10 2
289 | 0 2 9 2
290 | 1 1 9 2
291 | 2 0 9 2
292 | 0 3 8 2
293 | 1 2 8 2
294 | 2 1 8 2
295 | 3 0 8 2
296 | 0 4 7 2
297 | 1 3 7 2
298 | 2 2 7 2
299 | 3 1 7 2
300 | 4 0 7 2
301 | 0 5 6 2
302 | 1 4 6 2
303 | 2 3 6 2
304 | 3 2 6 2
305 | 4 1 6 2
306 | 5 0 6 2
307 | 0 6 5 2
308 | 1 5 5 2
309 | 2 4 5 2
310 | 3 3 5 2
311 | 4 2 5 2
312 | 5 1 5 2
313 | 6 0 5 2
314 | 0 7 4 2
315 | 1 6 4 2
316 | 2 5 4 2
317 | 3 4 4 2
318 | 4 3 4 2
319 | 5 2 4 2
320 | 6 1 4 2
321 | 7 0 4 2
322 | 0 8 3 2
323 | 1 7 3 2
324 | 2 6 3 2
325 | 3 5 3 2
326 | 4 4 3 2
327 | 5 3 3 2
328 | 6 2 3 2
329 | 7 1 3 2
330 | 8 0 3 2
331 | 0 9 2 2
332 | 1 8 2 2
333 | 2 7 2 2
334 | 3 6 2 2
335 | 4 5 2 2
336 | 5 4 2 2
337 | 6 3 2 2
338 | 7 2 2 2
339 | 8 1 2 2
340 | 9 0 2 2
341 | 0 10 1 2
342 | 1 9 1 2
343 | 2 8 1 2
344 | 3 7 1 2
345 | 4 6 1 2
346 | 5 5 1 2
347 | 6 4 1 2
348 | 7 3 1 2
349 | 8 2 1 2
350 | 9 1 1 2
351 |10 0 1 2
352 | 0 11 0 2
353 | 1 10 0 2
354 | 2 9 0 2
355 | 3 8 0 2
356 | 4 7 0 2
357 | 5 6 0 2
358 | 6 5 0 2
359 | 7 4 0 2
360 | 8 3 0 2
361 | 9 2 0 2
362 |10 1 0 2
363 |11 0 0 2
364 | 0 0 12 1
365 | 0 1 11 1
366 | 1 0 11 1
367 | 0 2 10 1
368 | 1 1 10 1
369 | 2 0 10 1
370 | 0 3 9 1
371 | 1 2 9 1
372 | 2 1 9 1
373 | 3 0 9 1
374 | 0 4 8 1
375 | 1 3 8 1
376 | 2 2 8 1
377 | 3 1 8 1
378 | 4 0 8 1
379 | 0 5 7 1
380 | 1 4 7 1
381 | 2 3 7 1
382 | 3 2 7 1
383 | 4 1 7 1
384 | 5 0 7 1
385 | 0 6 6 1
386 | 1 5 6 1
387 | 2 4 6 1
388 | 3 3 6 1
389 | 4 2 6 1
390 | 5 1 6 1
391 | 6 0 6 1
392 | 0 7 5 1
393 | 1 6 5 1
394 | 2 5 5 1
395 | 3 4 5 1
396 | 4 3 5 1
397 | 5 2 5 1
398 | 6 1 5 1
399 | 7 0 5 1
400 | 0 8 4 1
401 | 1 7 4 1
402 | 2 6 4 1
403 | 3 5 4 1
404 | 4 4 4 1
405 | 5 3 4 1
406 | 6 2 4 1
407 | 7 1 4 1
408 | 8 0 4 1
409 | 0 9 3 1
410 | 1 8 3 1
411 | 2 7 3 1
412 | 3 6 3 1
413 | 4 5 3 1
414 | 5 4 3 1
415 | 6 3 3 1
416 | 7 2 3 1
417 | 8 1 3 1
418 | 9 0 3 1
419 | 0 10 2 1
420 | 1 9 2 1
421 | 2 8 2 1
422 | 3 7 2 1
423 | 4 6 2 1
424 | 5 5 2 1
425 | 6 4 2 1
426 | 7 3 2 1
427 | 8 2 2 1
428 | 9 1 2 1
429 |10 0 2 1
430 | 0 11 1 1
431 | 1 10 1 1
432 | 2 9 1 1
433 | 3 8 1 1
434 | 4 7 1 1
435 | 5 6 1 1
436 | 6 5 1 1
437 | 7 4 1 1
438 | 8 3 1 1
439 | 9 2 1 1
440 |10 1 1 1
441 |11 0 1 1
442 | 0 12 0 1
443 | 1 11 0 1
444 | 2 10 0 1
445 | 3 9 0 1
446 | 4 8 0 1
447 | 5 7 0 1
448 | 6 6 0 1
449 | 7 5 0 1
450 | 8 4 0 1
451 | 9 3 0 1
452 |10 2 0 1
453 |11 1 0 1
454 |12 0 0 1
455 | 0 0 13 0
456 | 0 1 12 0
457 | 1 0 12 0
458 | 0 2 11 0
459 | 1 1 11 0
460 | 2 0 11 0
461 | 0 3 10 0
462 | 1 2 10 0
463 | 2 1 10 0
464 | 3 0 10 0
465 | 0 4 9 0
466 | 1 3 9 0
467 | 2 2 9 0
468 | 3 1 9 0
469 | 4 0 9 0
470 | 0 5 8 0
471 | 1 4 8 0
472 | 2 3 8 0
473 | 3 2 8 0
474 | 4 1 8 0
475 | 5 0 8 0
476 | 0 6 7 0
477 | 1 5 7 0
478 | 2 4 7 0
479 | 3 3 7 0
480 | 4 2 7 0
481 | 5 1 7 0
482 | 6 0 7 0
483 | 0 7 6 0
484 | 1 6 6 0
485 | 2 5 6 0
486 | 3 4 6 0
487 | 4 3 6 0
488 | 5 2 6 0
489 | 6 1 6 0
490 | 7 0 6 0
491 | 0 8 5 0
492 | 1 7 5 0
493 | 2 6 5 0
494 | 3 5 5 0
495 | 4 4 5 0
496 | 5 3 5 0
497 | 6 2 5 0
498 | 7 1 5 0
499 | 8 0 5 0
500 | 0 9 4 0
501 | 1 8 4 0
502 | 2 7 4 0
503 | 3 6 4 0
504 | 4 5 4 0
505 | 5 4 4 0
506 | 6 3 4 0
507 | 7 2 4 0
508 | 8 1 4 0
509 | 9 0 4 0
510 | 0 10 3 0
511 | 1 9 3 0
512 | 2 8 3 0
513 | 3 7 3 0
514 | 4 6 3 0
515 | 5 5 3 0
516 | 6 4 3 0
517 | 7 3 3 0
518 | 8 2 3 0
519 | 9 1 3 0
520 |10 0 3 0
521 | 0 11 2 0
522 | 1 10 2 0
523 | 2 9 2 0
524 | 3 8 2 0
525 | 4 7 2 0
526 | 5 6 2 0
527 | 6 5 2 0
528 | 7 4 2 0
529 | 8 3 2 0
530 | 9 2 2 0
531 |10 1 2 0
532 |11 0 2 0
533 | 0 12 1 0
534 | 1 11 1 0
535 | 2 10 1 0
536 | 3 9 1 0
537 | 4 8 1 0
538 | 5 7 1 0
539 | 6 6 1 0
540 | 7 5 1 0
541 | 8 4 1 0
542 | 9 3 1 0
543 |10 2 1 0
544 |11 1 1 0
545 |12 0 1 0
546 | 0 13 0 0
547 | 1 12 0 0
548 | 2 11 0 0
549 | 3 10 0 0
550 | 4 9 0 0
551 | 5 8 0 0
552 | 6 7 0 0
553 | 7 6 0 0
554 | 8 5 0 0
555 | 9 4 0 0
556 |10 3 0 0
557 |11 2 0 0
558 |12 1 0 0
559 |13 0 0 0
</xmp>
<hr>
<table><tr><td><a href="http://bridge.thomasoandrews.com/" class="image">
<img style="border:0;width:40px;height:56px" alt="Silhouette" src="graphics/StampSm.gif"></a><td>
Thomas Andrews
(<a href="mailto:deal@thomasoandrews.com">deal@thomasoandrews.com</a>)
Copyright 1996-2010. Deal is covered by the
<a href="http://www.gnu.org/copyleft/gpl.html">GNU General Public License.</a>
<p>
<a href="graphics/falling.jpg"><em>Plane Dealing</em></a> graphic
above created using
<a href="http://www.povray.org/">POV-Ray.</a>
</tr></table>
</div>
</html>
|