File: dist.html

package info (click to toggle)
deal 3.1.9-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,576 kB
  • sloc: ansic: 5,224; cpp: 4,186; tcl: 3,125; makefile: 203; javascript: 21; sh: 10
file content (733 lines) | stat: -rw-r--r-- 16,889 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
     "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<!-- $Id: dist.html 313 2009-06-11 05:44:13Z thomasoa $ -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<LINK REL="SHORTCUT ICON" HREF="/icon/bridge.ico">
<link rev="made" href="mailto:thomaso@centerline.com (Thomas Andrews)">
<link rel="stylesheet" type="text/css" href="look.css">
<title>
      Hand Distribution Table
</title>


</head>

<body>
<div class="toplevel back"><a href="index.html">Back to <em>Deal Top Page</em></a></div>
<div class="toplevel">
<h1> Hand Distribution Table </h1>
<p>
I am including this information in my web pages because I think it is
neat and that it is a method I think other writers of hand generators
might want to use.
<p>
It is also the only time I can think of when I have
used anything I learned in graduate school.

<h2> Creation of the table </h2>
<p>
My program, 'Deal', needed a fast way to determine whether a hand
was in a particular class.  The goal was to stay out of the TCL interpreter
as much as possible.  The answer was to implement a lookup table with an easy
indexing algorithm.
<p>
There are 560 hand shapes, where by "shape", I mean the ordered listing
of suit lengths: spades-hearts-diamonds-clubs.
<p>
The hand shapes are in easy 1-1 correspondence with the 3-subsets
of {0,...,15}. 
In particular, the hand shape with <var>s</var> spades, <var>h</var> hearts,
<var>d</var> diamonds, and <var>c</var> clubs corresponds
to the 3-set {<var>s</var>, <var>s</var>+<var>h</var>+1,
<var>s</var>+<var>h</var>+<var>d</var>+2}.
<p>
There is a linear order on n-subsets, for fixed n, called the squashed
order [see <span class="reference">Combinatorics on Finite Sets</span>, Anderson, pp 112-119.]
The nice thing about this order is that it is easy to find the index of
an n-set in the order.
In the case of n=3, take a subset {x,y,z}, with 0&lt;=x&lt;y&lt;z&lt;=15.
The index of this set in the squashed order is
<blockquote>(z choose 3) + (y choose 2) + (x choose 1)</blockquote>
For the hand shape s-h-d-c, then, the corresponding index in the squashed
order is
<blockquote>(s+h+d+2 choose 3) + (s+h+1 choose 2) + (s choose 1)</blockquote>
<p>
For added speed, I pre-computed
(n+2 choose 3) and (n+1 choose 2) for n=0,...13, placing the values
in static arrays.  The resulting C code looks like:
<blockquote>
<pre>
static int distTableIndex(s,h,d)
int s,h,d;
{
  static choose2tab[]={0, 1, 3,  6, 10, 15, 21, 28,  36,  45,  55,  66,  78,  91};
  static choose3tab[]={0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455};
  return choose3tab[s+h+d]+choose2tab[s+h]+s;
}
</pre>
</blockquote>

It is precisely because I can quickly compute this index that I have
chosen the squashed order.  Perhaps other orders also happen to allow
for quick indexing, but this is the one I found in my personal math library.

<h2> Usage of the table </h2>

The table is useful for fast lookups.  For example, lets say you were
looking for hands which were five-five or better in any two suits.  You could,
of course, simply check each suit length, but the problem with this is
that in an interpreted language, like Tcl, that might be too slow.  If,
however, you built a 560 element binary array, and do the computation
560 times up front, then when we start analyzing actual deals, we
can quickly determine whether a particular shape was in that class.
<p>
In reality, the table is not computed until the first request
is made of a shapeclass, which allows users to create large libraries
to be included but not instantiated until used.
<p>
For example:
<blockquote>
<pre>
shapecond Balanced {$s*$s+$h*$h+$d*$d+$c*$c<=47}
</pre>
</blockquote>
When this shapeclass is first used, a table of 560 entries is created,
and then the interpreter evaluates this expression only 560 times.
For rare hand classes, this is a significant improvement.
<p>
When Deal is confronted with a specific query about membership
in this class, all it has to do is use distTableIndex find the
index, then look it up in the table.  This is significantly
faster than reinterpreting the Tcl code every time.
<p>
The concept of "shape class" led to the concept of "shape function".
These are functions which use the shape of the hand to determine the
value.  For instance, I have a function which determines the opening
suit for a hand:
<blockquote>
<pre>
shapefunc opensuit {

	if {$s>=5 && $s>=$h && $s>=$d && $s>=$c} {return spades}

	if {$h>=5 && $h>=$d && $h>=$c} { return hearts }

	if {$d>=4 && $d>=$c} {return diamonds}

	if {$c<3} {return diamonds}

	return clubs
}
</pre>
</blockquote>
[ The current implementation of shapefunc is a bit of a memory hog,
unfortunately, since it allocates strings for every element of the
table, even if the strings are duplicates. For instance, the function
above has only 4 return values, "spades", "hearts", "diamonds", and "clubs".
Still, shapefunc instantiates 560 strings.  Smarter implementations
are certainly possible, and Tcl 8.0 alleviates the problem considerably
(because it allows deals with reference-counted strings.) ]
<p>
[ We could also instantiate the table an entry at a time, leaving null pointers
in the table until a value has been requested.  This has the advantage that
we will often compute considerably fewer values from the table.  The
disadvantage is that every time we need a value from the table, we will have
to do a check to see if a pointer value is null.  It
is not clear to me this would be an improvement or not, but it would
add a complexity to the code that I am not willing to maintain.  It might
seem that you would need to check a pointer anyway, to determine if the
shapeclass has been instantiated or not, but the implementation avoids
such a check.]

<h3> Note </h3>
The above definition of Balanced is an interesting oddity,
which I leave it up to the reader to try to understand.
Think about it for a moment before you look <a href=balanswer.html>here</a>.

<h2> Table </h2>

Here is the raw data of the table.  Not very interesting, but it does
help to make it clear how the squashed ordering works, and why the index
values are computed as they are.

<xmp>
Index| S  H  D  C
==================
  0  | 0  0  0 13
  1  | 0  0  1 12
  2  | 0  1  0 12
  3  | 1  0  0 12
  4  | 0  0  2 11
  5  | 0  1  1 11
  6  | 1  0  1 11
  7  | 0  2  0 11
  8  | 1  1  0 11
  9  | 2  0  0 11
 10  | 0  0  3 10
 11  | 0  1  2 10
 12  | 1  0  2 10
 13  | 0  2  1 10
 14  | 1  1  1 10
 15  | 2  0  1 10
 16  | 0  3  0 10
 17  | 1  2  0 10
 18  | 2  1  0 10
 19  | 3  0  0 10
 20  | 0  0  4  9
 21  | 0  1  3  9
 22  | 1  0  3  9
 23  | 0  2  2  9
 24  | 1  1  2  9
 25  | 2  0  2  9
 26  | 0  3  1  9
 27  | 1  2  1  9
 28  | 2  1  1  9
 29  | 3  0  1  9
 30  | 0  4  0  9
 31  | 1  3  0  9
 32  | 2  2  0  9
 33  | 3  1  0  9
 34  | 4  0  0  9
 35  | 0  0  5  8
 36  | 0  1  4  8
 37  | 1  0  4  8
 38  | 0  2  3  8
 39  | 1  1  3  8
 40  | 2  0  3  8
 41  | 0  3  2  8
 42  | 1  2  2  8
 43  | 2  1  2  8
 44  | 3  0  2  8
 45  | 0  4  1  8
 46  | 1  3  1  8
 47  | 2  2  1  8
 48  | 3  1  1  8
 49  | 4  0  1  8
 50  | 0  5  0  8
 51  | 1  4  0  8
 52  | 2  3  0  8
 53  | 3  2  0  8
 54  | 4  1  0  8
 55  | 5  0  0  8
 56  | 0  0  6  7
 57  | 0  1  5  7
 58  | 1  0  5  7
 59  | 0  2  4  7
 60  | 1  1  4  7
 61  | 2  0  4  7
 62  | 0  3  3  7
 63  | 1  2  3  7
 64  | 2  1  3  7
 65  | 3  0  3  7
 66  | 0  4  2  7
 67  | 1  3  2  7
 68  | 2  2  2  7
 69  | 3  1  2  7
 70  | 4  0  2  7
 71  | 0  5  1  7
 72  | 1  4  1  7
 73  | 2  3  1  7
 74  | 3  2  1  7
 75  | 4  1  1  7
 76  | 5  0  1  7
 77  | 0  6  0  7
 78  | 1  5  0  7
 79  | 2  4  0  7
 80  | 3  3  0  7
 81  | 4  2  0  7
 82  | 5  1  0  7
 83  | 6  0  0  7
 84  | 0  0  7  6
 85  | 0  1  6  6
 86  | 1  0  6  6
 87  | 0  2  5  6
 88  | 1  1  5  6
 89  | 2  0  5  6
 90  | 0  3  4  6
 91  | 1  2  4  6
 92  | 2  1  4  6
 93  | 3  0  4  6
 94  | 0  4  3  6
 95  | 1  3  3  6
 96  | 2  2  3  6
 97  | 3  1  3  6
 98  | 4  0  3  6
 99  | 0  5  2  6
100  | 1  4  2  6
101  | 2  3  2  6
102  | 3  2  2  6
103  | 4  1  2  6
104  | 5  0  2  6
105  | 0  6  1  6
106  | 1  5  1  6
107  | 2  4  1  6
108  | 3  3  1  6
109  | 4  2  1  6
110  | 5  1  1  6
111  | 6  0  1  6
112  | 0  7  0  6
113  | 1  6  0  6
114  | 2  5  0  6
115  | 3  4  0  6
116  | 4  3  0  6
117  | 5  2  0  6
118  | 6  1  0  6
119  | 7  0  0  6
120  | 0  0  8  5
121  | 0  1  7  5
122  | 1  0  7  5
123  | 0  2  6  5
124  | 1  1  6  5
125  | 2  0  6  5
126  | 0  3  5  5
127  | 1  2  5  5
128  | 2  1  5  5
129  | 3  0  5  5
130  | 0  4  4  5
131  | 1  3  4  5
132  | 2  2  4  5
133  | 3  1  4  5
134  | 4  0  4  5
135  | 0  5  3  5
136  | 1  4  3  5
137  | 2  3  3  5
138  | 3  2  3  5
139  | 4  1  3  5
140  | 5  0  3  5
141  | 0  6  2  5
142  | 1  5  2  5
143  | 2  4  2  5
144  | 3  3  2  5
145  | 4  2  2  5
146  | 5  1  2  5
147  | 6  0  2  5
148  | 0  7  1  5
149  | 1  6  1  5
150  | 2  5  1  5
151  | 3  4  1  5
152  | 4  3  1  5
153  | 5  2  1  5
154  | 6  1  1  5
155  | 7  0  1  5
156  | 0  8  0  5
157  | 1  7  0  5
158  | 2  6  0  5
159  | 3  5  0  5
160  | 4  4  0  5
161  | 5  3  0  5
162  | 6  2  0  5
163  | 7  1  0  5
164  | 8  0  0  5
165  | 0  0  9  4
166  | 0  1  8  4
167  | 1  0  8  4
168  | 0  2  7  4
169  | 1  1  7  4
170  | 2  0  7  4
171  | 0  3  6  4
172  | 1  2  6  4
173  | 2  1  6  4
174  | 3  0  6  4
175  | 0  4  5  4
176  | 1  3  5  4
177  | 2  2  5  4
178  | 3  1  5  4
179  | 4  0  5  4
180  | 0  5  4  4
181  | 1  4  4  4
182  | 2  3  4  4
183  | 3  2  4  4
184  | 4  1  4  4
185  | 5  0  4  4
186  | 0  6  3  4
187  | 1  5  3  4
188  | 2  4  3  4
189  | 3  3  3  4
190  | 4  2  3  4
191  | 5  1  3  4
192  | 6  0  3  4
193  | 0  7  2  4
194  | 1  6  2  4
195  | 2  5  2  4
196  | 3  4  2  4
197  | 4  3  2  4
198  | 5  2  2  4
199  | 6  1  2  4
200  | 7  0  2  4
201  | 0  8  1  4
202  | 1  7  1  4
203  | 2  6  1  4
204  | 3  5  1  4
205  | 4  4  1  4
206  | 5  3  1  4
207  | 6  2  1  4
208  | 7  1  1  4
209  | 8  0  1  4
210  | 0  9  0  4
211  | 1  8  0  4
212  | 2  7  0  4
213  | 3  6  0  4
214  | 4  5  0  4
215  | 5  4  0  4
216  | 6  3  0  4
217  | 7  2  0  4
218  | 8  1  0  4
219  | 9  0  0  4
220  | 0  0 10  3
221  | 0  1  9  3
222  | 1  0  9  3
223  | 0  2  8  3
224  | 1  1  8  3
225  | 2  0  8  3
226  | 0  3  7  3
227  | 1  2  7  3
228  | 2  1  7  3
229  | 3  0  7  3
230  | 0  4  6  3
231  | 1  3  6  3
232  | 2  2  6  3
233  | 3  1  6  3
234  | 4  0  6  3
235  | 0  5  5  3
236  | 1  4  5  3
237  | 2  3  5  3
238  | 3  2  5  3
239  | 4  1  5  3
240  | 5  0  5  3
241  | 0  6  4  3
242  | 1  5  4  3
243  | 2  4  4  3
244  | 3  3  4  3
245  | 4  2  4  3
246  | 5  1  4  3
247  | 6  0  4  3
248  | 0  7  3  3
249  | 1  6  3  3
250  | 2  5  3  3
251  | 3  4  3  3
252  | 4  3  3  3
253  | 5  2  3  3
254  | 6  1  3  3
255  | 7  0  3  3
256  | 0  8  2  3
257  | 1  7  2  3
258  | 2  6  2  3
259  | 3  5  2  3
260  | 4  4  2  3
261  | 5  3  2  3
262  | 6  2  2  3
263  | 7  1  2  3
264  | 8  0  2  3
265  | 0  9  1  3
266  | 1  8  1  3
267  | 2  7  1  3
268  | 3  6  1  3
269  | 4  5  1  3
270  | 5  4  1  3
271  | 6  3  1  3
272  | 7  2  1  3
273  | 8  1  1  3
274  | 9  0  1  3
275  | 0 10  0  3
276  | 1  9  0  3
277  | 2  8  0  3
278  | 3  7  0  3
279  | 4  6  0  3
280  | 5  5  0  3
281  | 6  4  0  3
282  | 7  3  0  3
283  | 8  2  0  3
284  | 9  1  0  3
285  |10  0  0  3
286  | 0  0 11  2
287  | 0  1 10  2
288  | 1  0 10  2
289  | 0  2  9  2
290  | 1  1  9  2
291  | 2  0  9  2
292  | 0  3  8  2
293  | 1  2  8  2
294  | 2  1  8  2
295  | 3  0  8  2
296  | 0  4  7  2
297  | 1  3  7  2
298  | 2  2  7  2
299  | 3  1  7  2
300  | 4  0  7  2
301  | 0  5  6  2
302  | 1  4  6  2
303  | 2  3  6  2
304  | 3  2  6  2
305  | 4  1  6  2
306  | 5  0  6  2
307  | 0  6  5  2
308  | 1  5  5  2
309  | 2  4  5  2
310  | 3  3  5  2
311  | 4  2  5  2
312  | 5  1  5  2
313  | 6  0  5  2
314  | 0  7  4  2
315  | 1  6  4  2
316  | 2  5  4  2
317  | 3  4  4  2
318  | 4  3  4  2
319  | 5  2  4  2
320  | 6  1  4  2
321  | 7  0  4  2
322  | 0  8  3  2
323  | 1  7  3  2
324  | 2  6  3  2
325  | 3  5  3  2
326  | 4  4  3  2
327  | 5  3  3  2
328  | 6  2  3  2
329  | 7  1  3  2
330  | 8  0  3  2
331  | 0  9  2  2
332  | 1  8  2  2
333  | 2  7  2  2
334  | 3  6  2  2
335  | 4  5  2  2
336  | 5  4  2  2
337  | 6  3  2  2
338  | 7  2  2  2
339  | 8  1  2  2
340  | 9  0  2  2
341  | 0 10  1  2
342  | 1  9  1  2
343  | 2  8  1  2
344  | 3  7  1  2
345  | 4  6  1  2
346  | 5  5  1  2
347  | 6  4  1  2
348  | 7  3  1  2
349  | 8  2  1  2
350  | 9  1  1  2
351  |10  0  1  2
352  | 0 11  0  2
353  | 1 10  0  2
354  | 2  9  0  2
355  | 3  8  0  2
356  | 4  7  0  2
357  | 5  6  0  2
358  | 6  5  0  2
359  | 7  4  0  2
360  | 8  3  0  2
361  | 9  2  0  2
362  |10  1  0  2
363  |11  0  0  2
364  | 0  0 12  1
365  | 0  1 11  1
366  | 1  0 11  1
367  | 0  2 10  1
368  | 1  1 10  1
369  | 2  0 10  1
370  | 0  3  9  1
371  | 1  2  9  1
372  | 2  1  9  1
373  | 3  0  9  1
374  | 0  4  8  1
375  | 1  3  8  1
376  | 2  2  8  1
377  | 3  1  8  1
378  | 4  0  8  1
379  | 0  5  7  1
380  | 1  4  7  1
381  | 2  3  7  1
382  | 3  2  7  1
383  | 4  1  7  1
384  | 5  0  7  1
385  | 0  6  6  1
386  | 1  5  6  1
387  | 2  4  6  1
388  | 3  3  6  1
389  | 4  2  6  1
390  | 5  1  6  1
391  | 6  0  6  1
392  | 0  7  5  1
393  | 1  6  5  1
394  | 2  5  5  1
395  | 3  4  5  1
396  | 4  3  5  1
397  | 5  2  5  1
398  | 6  1  5  1
399  | 7  0  5  1
400  | 0  8  4  1
401  | 1  7  4  1
402  | 2  6  4  1
403  | 3  5  4  1
404  | 4  4  4  1
405  | 5  3  4  1
406  | 6  2  4  1
407  | 7  1  4  1
408  | 8  0  4  1
409  | 0  9  3  1
410  | 1  8  3  1
411  | 2  7  3  1
412  | 3  6  3  1
413  | 4  5  3  1
414  | 5  4  3  1
415  | 6  3  3  1
416  | 7  2  3  1
417  | 8  1  3  1
418  | 9  0  3  1
419  | 0 10  2  1
420  | 1  9  2  1
421  | 2  8  2  1
422  | 3  7  2  1
423  | 4  6  2  1
424  | 5  5  2  1
425  | 6  4  2  1
426  | 7  3  2  1
427  | 8  2  2  1
428  | 9  1  2  1
429  |10  0  2  1
430  | 0 11  1  1
431  | 1 10  1  1
432  | 2  9  1  1
433  | 3  8  1  1
434  | 4  7  1  1
435  | 5  6  1  1
436  | 6  5  1  1
437  | 7  4  1  1
438  | 8  3  1  1
439  | 9  2  1  1
440  |10  1  1  1
441  |11  0  1  1
442  | 0 12  0  1
443  | 1 11  0  1
444  | 2 10  0  1
445  | 3  9  0  1
446  | 4  8  0  1
447  | 5  7  0  1
448  | 6  6  0  1
449  | 7  5  0  1
450  | 8  4  0  1
451  | 9  3  0  1
452  |10  2  0  1
453  |11  1  0  1
454  |12  0  0  1
455  | 0  0 13  0
456  | 0  1 12  0
457  | 1  0 12  0
458  | 0  2 11  0
459  | 1  1 11  0
460  | 2  0 11  0
461  | 0  3 10  0
462  | 1  2 10  0
463  | 2  1 10  0
464  | 3  0 10  0
465  | 0  4  9  0
466  | 1  3  9  0
467  | 2  2  9  0
468  | 3  1  9  0
469  | 4  0  9  0
470  | 0  5  8  0
471  | 1  4  8  0
472  | 2  3  8  0
473  | 3  2  8  0
474  | 4  1  8  0
475  | 5  0  8  0
476  | 0  6  7  0
477  | 1  5  7  0
478  | 2  4  7  0
479  | 3  3  7  0
480  | 4  2  7  0
481  | 5  1  7  0
482  | 6  0  7  0
483  | 0  7  6  0
484  | 1  6  6  0
485  | 2  5  6  0
486  | 3  4  6  0
487  | 4  3  6  0
488  | 5  2  6  0
489  | 6  1  6  0
490  | 7  0  6  0
491  | 0  8  5  0
492  | 1  7  5  0
493  | 2  6  5  0
494  | 3  5  5  0
495  | 4  4  5  0
496  | 5  3  5  0
497  | 6  2  5  0
498  | 7  1  5  0
499  | 8  0  5  0
500  | 0  9  4  0
501  | 1  8  4  0
502  | 2  7  4  0
503  | 3  6  4  0
504  | 4  5  4  0
505  | 5  4  4  0
506  | 6  3  4  0
507  | 7  2  4  0
508  | 8  1  4  0
509  | 9  0  4  0
510  | 0 10  3  0
511  | 1  9  3  0
512  | 2  8  3  0
513  | 3  7  3  0
514  | 4  6  3  0
515  | 5  5  3  0
516  | 6  4  3  0
517  | 7  3  3  0
518  | 8  2  3  0
519  | 9  1  3  0
520  |10  0  3  0
521  | 0 11  2  0
522  | 1 10  2  0
523  | 2  9  2  0
524  | 3  8  2  0
525  | 4  7  2  0
526  | 5  6  2  0
527  | 6  5  2  0
528  | 7  4  2  0
529  | 8  3  2  0
530  | 9  2  2  0
531  |10  1  2  0
532  |11  0  2  0
533  | 0 12  1  0
534  | 1 11  1  0
535  | 2 10  1  0
536  | 3  9  1  0
537  | 4  8  1  0
538  | 5  7  1  0
539  | 6  6  1  0
540  | 7  5  1  0
541  | 8  4  1  0
542  | 9  3  1  0
543  |10  2  1  0
544  |11  1  1  0
545  |12  0  1  0
546  | 0 13  0  0
547  | 1 12  0  0
548  | 2 11  0  0
549  | 3 10  0  0
550  | 4  9  0  0
551  | 5  8  0  0
552  | 6  7  0  0
553  | 7  6  0  0
554  | 8  5  0  0
555  | 9  4  0  0
556  |10  3  0  0
557  |11  2  0  0
558  |12  1  0  0
559  |13  0  0  0
</xmp>
<hr>
<table><tr><td><a href="http://bridge.thomasoandrews.com/" class="image">
<img style="border:0;width:40px;height:56px" alt="Silhouette" src="graphics/StampSm.gif"></a><td>
Thomas Andrews
(<a href="mailto:deal&#64;thomasoandrews.com">deal&#64;thomasoandrews.com</a>)
Copyright 1996-2010.  Deal is covered by the 
<a href="http://www.gnu.org/copyleft/gpl.html">GNU General Public License.</a>
<p>
<a href="graphics/falling.jpg"><em>Plane Dealing</em></a> graphic
above created using
<a href="http://www.povray.org/">POV-Ray.</a>
</tr></table>
</div>
</html>