1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
|
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""The :mod:`gp` module provides the methods and classes to perform
Genetic Programming with DEAP. It essentially contains the classes to
build a Genetic Program Tree, and the functions to evaluate it.
This module support both strongly and loosely typed GP.
"""
import copy
import math
import random
import re
import sys
import warnings
from collections import defaultdict, deque
from functools import partial, wraps
from inspect import isclass
from operator import eq, lt
import tools # Needed by HARM-GP
######################################
# GP Data structure #
######################################
# Define the name of type for any types.
__type__ = object
class PrimitiveTree(list):
"""Tree specifically formatted for optimization of genetic
programming operations. The tree is represented with a
list where the nodes are appended in a depth-first order.
The nodes appended to the tree are required to
have an attribute *arity* which defines the arity of the
primitive. An arity of 0 is expected from terminals nodes.
"""
def __init__(self, content):
list.__init__(self, content)
def __deepcopy__(self, memo):
new = self.__class__(self)
new.__dict__.update(copy.deepcopy(self.__dict__, memo))
return new
def __setitem__(self, key, val):
# Check for most common errors
# Does NOT check for STGP constraints
if isinstance(key, slice):
if key.start >= len(self):
raise IndexError("Invalid slice object (try to assign a %s"
" in a tree of size %d). Even if this is allowed by the"
" list object slice setter, this should not be done in"
" the PrimitiveTree context, as this may lead to an"
" unpredictable behavior for searchSubtree or evaluate."
% (key, len(self)))
total = val[0].arity
for node in val[1:]:
total += node.arity - 1
if total != 0:
raise ValueError("Invalid slice assignation : insertion of"
" an incomplete subtree is not allowed in PrimitiveTree."
" A tree is defined as incomplete when some nodes cannot"
" be mapped to any position in the tree, considering the"
" primitives' arity. For instance, the tree [sub, 4, 5,"
" 6] is incomplete if the arity of sub is 2, because it"
" would produce an orphan node (the 6).")
elif val.arity != self[key].arity:
raise ValueError("Invalid node replacement with a node of a"
" different arity.")
list.__setitem__(self, key, val)
def __str__(self):
"""Return the expression in a human readable string.
"""
string = ""
stack = []
for node in self:
stack.append((node, []))
while len(stack[-1][1]) == stack[-1][0].arity:
prim, args = stack.pop()
string = prim.format(*args)
if len(stack) == 0:
break # If stack is empty, all nodes should have been seen
stack[-1][1].append(string)
return string
@classmethod
def from_string(cls, string, pset):
"""Try to convert a string expression into a PrimitiveTree given a
PrimitiveSet *pset*. The primitive set needs to contain every primitive
present in the expression.
:param string: String representation of a Python expression.
:param pset: Primitive set from which primitives are selected.
:returns: PrimitiveTree populated with the deserialized primitives.
"""
tokens = re.split("[ \t\n\r\f\v(),]", string)
expr = []
ret_types = deque()
for token in tokens:
if token == '':
continue
if len(ret_types) != 0:
type_ = ret_types.popleft()
else:
type_ = None
if token in pset.mapping:
primitive = pset.mapping[token]
if type_ is not None and not issubclass(primitive.ret, type_):
raise TypeError("Primitive {} return type {} does not "
"match the expected one: {}."
.format(primitive, primitive.ret, type_))
expr.append(primitive)
if isinstance(primitive, Primitive):
ret_types.extendleft(reversed(primitive.args))
else:
try:
token = eval(token)
except NameError:
raise TypeError("Unable to evaluate terminal: {}.".format(token))
if type_ is None:
type_ = type(token)
if not issubclass(type(token), type_):
raise TypeError("Terminal {} type {} does not "
"match the expected one: {}."
.format(token, type(token), type_))
expr.append(Terminal(token, False, type_))
return cls(expr)
@property
def height(self):
"""Return the height of the tree, or the depth of the
deepest node.
"""
stack = [0]
max_depth = 0
for elem in self:
depth = stack.pop()
max_depth = max(max_depth, depth)
stack.extend([depth + 1] * elem.arity)
return max_depth
@property
def root(self):
"""Root of the tree, the element 0 of the list.
"""
return self[0]
def searchSubtree(self, begin):
"""Return a slice object that corresponds to the
range of values that defines the subtree which has the
element with index *begin* as its root.
"""
end = begin + 1
total = self[begin].arity
while total > 0:
total += self[end].arity - 1
end += 1
return slice(begin, end)
class Primitive(object):
"""Class that encapsulates a primitive and when called with arguments it
returns the Python code to call the primitive with the arguments.
>>> pr = Primitive("mul", (int, int), int)
>>> pr.format(1, 2)
'mul(1, 2)'
"""
__slots__ = ('name', 'arity', 'args', 'ret', 'seq')
def __init__(self, name, args, ret):
self.name = name
self.arity = len(args)
self.args = args
self.ret = ret
args = ", ".join(map("{{{0}}}".format, range(self.arity)))
self.seq = "{name}({args})".format(name=self.name, args=args)
def format(self, *args):
return self.seq.format(*args)
def __eq__(self, other):
if type(self) is type(other):
return all(getattr(self, slot) == getattr(other, slot)
for slot in self.__slots__)
else:
return NotImplemented
class Terminal(object):
"""Class that encapsulates terminal primitive in expression. Terminals can
be values or 0-arity functions.
"""
__slots__ = ('name', 'value', 'ret', 'conv_fct')
def __init__(self, terminal, symbolic, ret):
self.ret = ret
self.value = terminal
self.name = str(terminal)
self.conv_fct = str if symbolic else repr
@property
def arity(self):
return 0
def format(self):
return self.conv_fct(self.value)
def __eq__(self, other):
if type(self) is type(other):
return all(getattr(self, slot) == getattr(other, slot)
for slot in self.__slots__)
else:
return NotImplemented
class Ephemeral(Terminal):
"""Class that encapsulates a terminal which value is set when the
object is created. To mutate the value, a new object has to be
generated. This is an abstract base class. When subclassing, a
staticmethod 'func' must be defined.
"""
def __init__(self):
Terminal.__init__(self, self.func(), symbolic=False, ret=self.ret)
@staticmethod
def func():
"""Return a random value used to define the ephemeral state.
"""
raise NotImplementedError
class PrimitiveSetTyped(object):
"""Class that contains the primitives that can be used to solve a
Strongly Typed GP problem. The set also defined the researched
function return type, and input arguments type and number.
"""
def __init__(self, name, in_types, ret_type, prefix="ARG"):
self.terminals = defaultdict(list)
self.primitives = defaultdict(list)
self.arguments = []
# setting "__builtins__" to None avoid the context
# being polluted by builtins function when evaluating
# GP expression.
self.context = {"__builtins__": None}
self.mapping = dict()
self.terms_count = 0
self.prims_count = 0
self.name = name
self.ret = ret_type
self.ins = in_types
for i, type_ in enumerate(in_types):
arg_str = "{prefix}{index}".format(prefix=prefix, index=i)
self.arguments.append(arg_str)
term = Terminal(arg_str, True, type_)
self._add(term)
self.terms_count += 1
def renameArguments(self, **kargs):
"""Rename function arguments with new names from *kargs*.
"""
for i, old_name in enumerate(self.arguments):
if old_name in kargs:
new_name = kargs[old_name]
self.arguments[i] = new_name
self.mapping[new_name] = self.mapping[old_name]
self.mapping[new_name].value = new_name
del self.mapping[old_name]
def _add(self, prim):
def addType(dict_, ret_type):
if ret_type not in dict_:
new_list = []
for type_, list_ in dict_.items():
if issubclass(type_, ret_type):
for item in list_:
if item not in new_list:
new_list.append(item)
dict_[ret_type] = new_list
addType(self.primitives, prim.ret)
addType(self.terminals, prim.ret)
self.mapping[prim.name] = prim
if isinstance(prim, Primitive):
for type_ in prim.args:
addType(self.primitives, type_)
addType(self.terminals, type_)
dict_ = self.primitives
else:
dict_ = self.terminals
for type_ in dict_:
if issubclass(prim.ret, type_):
dict_[type_].append(prim)
def addPrimitive(self, primitive, in_types, ret_type, name=None):
"""Add a primitive to the set.
:param primitive: callable object or a function.
:parma in_types: list of primitives arguments' type
:param ret_type: type returned by the primitive.
:param name: alternative name for the primitive instead
of its __name__ attribute.
"""
if name is None:
name = primitive.__name__
prim = Primitive(name, in_types, ret_type)
assert name not in self.context or \
self.context[name] is primitive, \
"Primitives are required to have a unique name. " \
"Consider using the argument 'name' to rename your " \
"second '%s' primitive." % (name,)
self._add(prim)
self.context[prim.name] = primitive
self.prims_count += 1
def addTerminal(self, terminal, ret_type, name=None):
"""Add a terminal to the set. Terminals can be named
using the optional *name* argument. This should be
used : to define named constant (i.e.: pi); to speed the
evaluation time when the object is long to build; when
the object does not have a __repr__ functions that returns
the code to build the object; when the object class is
not a Python built-in.
:param terminal: Object, or a function with no arguments.
:param ret_type: Type of the terminal.
:param name: defines the name of the terminal in the expression.
"""
symbolic = False
if name is None and callable(terminal):
name = terminal.__name__
assert name not in self.context, \
"Terminals are required to have a unique name. " \
"Consider using the argument 'name' to rename your " \
"second %s terminal." % (name,)
if name is not None:
self.context[name] = terminal
terminal = name
symbolic = True
elif terminal in (True, False):
# To support True and False terminals with Python 2.
self.context[str(terminal)] = terminal
prim = Terminal(terminal, symbolic, ret_type)
self._add(prim)
self.terms_count += 1
def addEphemeralConstant(self, name, ephemeral, ret_type):
"""Add an ephemeral constant to the set. An ephemeral constant
is a no argument function that returns a random value. The value
of the constant is constant for a Tree, but may differ from one
Tree to another.
:param name: name used to refers to this ephemeral type.
:param ephemeral: function with no arguments returning a random value.
:param ret_type: type of the object returned by *ephemeral*.
"""
module_gp = globals()
if name not in module_gp:
class_ = type(name, (Ephemeral,), {'func': staticmethod(ephemeral),
'ret': ret_type})
module_gp[name] = class_
else:
class_ = module_gp[name]
if issubclass(class_, Ephemeral):
if class_.func is not ephemeral:
raise Exception("Ephemerals with different functions should "
"be named differently, even between psets.")
elif class_.ret is not ret_type:
raise Exception("Ephemerals with the same name and function "
"should have the same type, even between psets.")
else:
raise Exception("Ephemerals should be named differently "
"than classes defined in the gp module.")
self._add(class_)
self.terms_count += 1
def addADF(self, adfset):
"""Add an Automatically Defined Function (ADF) to the set.
:param adfset: PrimitiveSetTyped containing the primitives with which
the ADF can be built.
"""
prim = Primitive(adfset.name, adfset.ins, adfset.ret)
self._add(prim)
self.prims_count += 1
@property
def terminalRatio(self):
"""Return the ratio of the number of terminals on the number of all
kind of primitives.
"""
return self.terms_count / float(self.terms_count + self.prims_count)
class PrimitiveSet(PrimitiveSetTyped):
"""Class same as :class:`~deap.gp.PrimitiveSetTyped`, except there is no
definition of type.
"""
def __init__(self, name, arity, prefix="ARG"):
args = [__type__] * arity
PrimitiveSetTyped.__init__(self, name, args, __type__, prefix)
def addPrimitive(self, primitive, arity, name=None):
"""Add primitive *primitive* with arity *arity* to the set.
If a name *name* is provided, it will replace the attribute __name__
attribute to represent/identify the primitive.
"""
assert arity > 0, "arity should be >= 1"
args = [__type__] * arity
PrimitiveSetTyped.addPrimitive(self, primitive, args, __type__, name)
def addTerminal(self, terminal, name=None):
"""Add a terminal to the set."""
PrimitiveSetTyped.addTerminal(self, terminal, __type__, name)
def addEphemeralConstant(self, name, ephemeral):
"""Add an ephemeral constant to the set."""
PrimitiveSetTyped.addEphemeralConstant(self, name, ephemeral, __type__)
######################################
# GP Tree compilation functions #
######################################
def compile(expr, pset):
"""Compile the expression *expr*.
:param expr: Expression to compile. It can either be a PrimitiveTree,
a string of Python code or any object that when
converted into string produced a valid Python code
expression.
:param pset: Primitive set against which the expression is compile.
:returns: a function if the primitive set has 1 or more arguments,
or return the results produced by evaluating the tree.
"""
code = str(expr)
if len(pset.arguments) > 0:
# This section is a stripped version of the lambdify
# function of SymPy 0.6.6.
args = ",".join(arg for arg in pset.arguments)
code = "lambda {args}: {code}".format(args=args, code=code)
try:
return eval(code, pset.context, {})
except MemoryError:
_, _, traceback = sys.exc_info()
raise MemoryError("DEAP : Error in tree evaluation :"
" Python cannot evaluate a tree higher than 90. "
"To avoid this problem, you should use bloat control on your "
"operators. See the DEAP documentation for more information. "
"DEAP will now abort.").with_traceback(traceback)
def compileADF(expr, psets):
"""Compile the expression represented by a list of trees. The first
element of the list is the main tree, and the following elements are
automatically defined functions (ADF) that can be called by the first
tree.
:param expr: Expression to compile. It can either be a PrimitiveTree,
a string of Python code or any object that when
converted into string produced a valid Python code
expression.
:param psets: List of primitive sets. Each set corresponds to an ADF
while the last set is associated with the expression
and should contain reference to the preceding ADFs.
:returns: a function if the main primitive set has 1 or more arguments,
or return the results produced by evaluating the tree.
"""
adfdict = {}
func = None
for pset, subexpr in reversed(zip(psets, expr)):
pset.context.update(adfdict)
func = compile(subexpr, pset)
adfdict.update({pset.name: func})
return func
######################################
# GP Program generation functions #
######################################
def genFull(pset, min_, max_, type_=None):
"""Generate an expression where each leaf has the same depth
between *min* and *max*.
:param pset: Primitive set from which primitives are selected.
:param min_: Minimum height of the produced trees.
:param max_: Maximum Height of the produced trees.
:param type_: The type that should return the tree when called, when
:obj:`None` (default) the type of :pset: (pset.ret)
is assumed.
:returns: A full tree with all leaves at the same depth.
"""
def condition(height, depth):
"""Expression generation stops when the depth is equal to height."""
return depth == height
return generate(pset, min_, max_, condition, type_)
def genGrow(pset, min_, max_, type_=None):
"""Generate an expression where each leaf might have a different depth
between *min* and *max*.
:param pset: Primitive set from which primitives are selected.
:param min_: Minimum height of the produced trees.
:param max_: Maximum Height of the produced trees.
:param type_: The type that should return the tree when called, when
:obj:`None` (default) the type of :pset: (pset.ret)
is assumed.
:returns: A grown tree with leaves at possibly different depths.
"""
def condition(height, depth):
"""Expression generation stops when the depth is equal to height
or when it is randomly determined that a node should be a terminal.
"""
return depth == height or \
(depth >= min_ and random.random() < pset.terminalRatio)
return generate(pset, min_, max_, condition, type_)
def genHalfAndHalf(pset, min_, max_, type_=None):
"""Generate an expression with a PrimitiveSet *pset*.
Half the time, the expression is generated with :func:`~deap.gp.genGrow`,
the other half, the expression is generated with :func:`~deap.gp.genFull`.
:param pset: Primitive set from which primitives are selected.
:param min_: Minimum height of the produced trees.
:param max_: Maximum Height of the produced trees.
:param type_: The type that should return the tree when called, when
:obj:`None` (default) the type of :pset: (pset.ret)
is assumed.
:returns: Either, a full or a grown tree.
"""
method = random.choice((genGrow, genFull))
return method(pset, min_, max_, type_)
def genRamped(pset, min_, max_, type_=None):
"""
.. deprecated:: 1.0
The function has been renamed. Use :func:`~deap.gp.genHalfAndHalf` instead.
"""
warnings.warn("gp.genRamped has been renamed. Use genHalfAndHalf instead.",
FutureWarning)
return genHalfAndHalf(pset, min_, max_, type_)
def generate(pset, min_, max_, condition, type_=None):
"""Generate a Tree as a list of list. The tree is build
from the root to the leaves, and it stop growing when the
condition is fulfilled.
:param pset: Primitive set from which primitives are selected.
:param min_: Minimum height of the produced trees.
:param max_: Maximum Height of the produced trees.
:param condition: The condition is a function that takes two arguments,
the height of the tree to build and the current
depth in the tree.
:param type_: The type that should return the tree when called, when
:obj:`None` (default) the type of :pset: (pset.ret)
is assumed.
:returns: A grown tree with leaves at possibly different depths
depending on the condition function.
"""
if type_ is None:
type_ = pset.ret
expr = []
height = random.randint(min_, max_)
stack = [(0, type_)]
while len(stack) != 0:
depth, type_ = stack.pop()
if condition(height, depth):
try:
term = random.choice(pset.terminals[type_])
except IndexError:
_, _, traceback = sys.exc_info()
raise IndexError("The gp.generate function tried to add " \
"a terminal of type '%s', but there is " \
"none available." % (type_,)).with_traceback(traceback)
if isclass(term):
term = term()
expr.append(term)
else:
try:
prim = random.choice(pset.primitives[type_])
except IndexError:
_, _, traceback = sys.exc_info()
raise IndexError("The gp.generate function tried to add " \
"a primitive of type '%s', but there is " \
"none available." % (type_,)).with_traceback(traceback)
expr.append(prim)
for arg in reversed(prim.args):
stack.append((depth + 1, arg))
return expr
######################################
# GP Crossovers #
######################################
def cxOnePoint(ind1, ind2):
"""Randomly select crossover point in each individual and exchange each
subtree with the point as root between each individual.
:param ind1: First tree participating in the crossover.
:param ind2: Second tree participating in the crossover.
:returns: A tuple of two trees.
"""
if len(ind1) < 2 or len(ind2) < 2:
# No crossover on single node tree
return ind1, ind2
# List all available primitive types in each individual
types1 = defaultdict(list)
types2 = defaultdict(list)
if ind1.root.ret == __type__:
# Not STGP optimization
types1[__type__] = xrange(1, len(ind1))
types2[__type__] = xrange(1, len(ind2))
common_types = [__type__]
else:
for idx, node in enumerate(ind1[1:], 1):
types1[node.ret].append(idx)
for idx, node in enumerate(ind2[1:], 1):
types2[node.ret].append(idx)
common_types = set(types1.keys()).intersection(set(types2.keys()))
if len(common_types) > 0:
type_ = random.choice(list(common_types))
index1 = random.choice(types1[type_])
index2 = random.choice(types2[type_])
slice1 = ind1.searchSubtree(index1)
slice2 = ind2.searchSubtree(index2)
ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1]
return ind1, ind2
def cxOnePointLeafBiased(ind1, ind2, termpb):
"""Randomly select crossover point in each individual and exchange each
subtree with the point as root between each individual.
:param ind1: First typed tree participating in the crossover.
:param ind2: Second typed tree participating in the crossover.
:param termpb: The probability of choosing a terminal node (leaf).
:returns: A tuple of two typed trees.
When the nodes are strongly typed, the operator makes sure the
second node type corresponds to the first node type.
The parameter *termpb* sets the probability to choose between a terminal
or non-terminal crossover point. For instance, as defined by Koza, non-
terminal primitives are selected for 90% of the crossover points, and
terminals for 10%, so *termpb* should be set to 0.1.
"""
if len(ind1) < 2 or len(ind2) < 2:
# No crossover on single node tree
return ind1, ind2
# Determine whether to keep terminals or primitives for each individual
terminal_op = partial(eq, 0)
primitive_op = partial(lt, 0)
arity_op1 = terminal_op if random.random() < termpb else primitive_op
arity_op2 = terminal_op if random.random() < termpb else primitive_op
# List all available primitive or terminal types in each individual
types1 = defaultdict(list)
types2 = defaultdict(list)
for idx, node in enumerate(ind1[1:], 1):
if arity_op1(node.arity):
types1[node.ret].append(idx)
for idx, node in enumerate(ind2[1:], 1):
if arity_op2(node.arity):
types2[node.ret].append(idx)
common_types = set(types1.keys()).intersection(set(types2.keys()))
if len(common_types) > 0:
# Set does not support indexing
type_ = random.sample(common_types, 1)[0]
index1 = random.choice(types1[type_])
index2 = random.choice(types2[type_])
slice1 = ind1.searchSubtree(index1)
slice2 = ind2.searchSubtree(index2)
ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1]
return ind1, ind2
######################################
# GP Mutations #
######################################
def mutUniform(individual, expr, pset):
"""Randomly select a point in the tree *individual*, then replace the
subtree at that point as a root by the expression generated using method
:func:`expr`.
:param individual: The tree to be mutated.
:param expr: A function object that can generate an expression when
called.
:returns: A tuple of one tree.
"""
index = random.randrange(len(individual))
slice_ = individual.searchSubtree(index)
type_ = individual[index].ret
individual[slice_] = expr(pset=pset, type_=type_)
return individual,
def mutNodeReplacement(individual, pset):
"""Replaces a randomly chosen primitive from *individual* by a randomly
chosen primitive with the same number of arguments from the :attr:`pset`
attribute of the individual.
:param individual: The normal or typed tree to be mutated.
:returns: A tuple of one tree.
"""
if len(individual) < 2:
return individual,
index = random.randrange(1, len(individual))
node = individual[index]
if node.arity == 0: # Terminal
term = random.choice(pset.terminals[node.ret])
if isclass(term):
term = term()
individual[index] = term
else: # Primitive
prims = [p for p in pset.primitives[node.ret] if p.args == node.args]
individual[index] = random.choice(prims)
return individual,
def mutEphemeral(individual, mode):
"""This operator works on the constants of the tree *individual*. In
*mode* ``"one"``, it will change the value of one of the individual
ephemeral constants by calling its generator function. In *mode*
``"all"``, it will change the value of **all** the ephemeral constants.
:param individual: The normal or typed tree to be mutated.
:param mode: A string to indicate to change ``"one"`` or ``"all"``
ephemeral constants.
:returns: A tuple of one tree.
"""
if mode not in ["one", "all"]:
raise ValueError("Mode must be one of \"one\" or \"all\"")
ephemerals_idx = [index
for index, node in enumerate(individual)
if isinstance(node, Ephemeral)]
if len(ephemerals_idx) > 0:
if mode == "one":
ephemerals_idx = (random.choice(ephemerals_idx),)
for i in ephemerals_idx:
individual[i] = type(individual[i])()
return individual,
def mutInsert(individual, pset):
"""Inserts a new branch at a random position in *individual*. The subtree
at the chosen position is used as child node of the created subtree, in
that way, it is really an insertion rather than a replacement. Note that
the original subtree will become one of the children of the new primitive
inserted, but not perforce the first (its position is randomly selected if
the new primitive has more than one child).
:param individual: The normal or typed tree to be mutated.
:returns: A tuple of one tree.
"""
index = random.randrange(len(individual))
node = individual[index]
slice_ = individual.searchSubtree(index)
choice = random.choice
# As we want to keep the current node as children of the new one,
# it must accept the return value of the current node
primitives = [p for p in pset.primitives[node.ret] if node.ret in p.args]
if len(primitives) == 0:
return individual,
new_node = choice(primitives)
new_subtree = [None] * len(new_node.args)
position = choice([i for i, a in enumerate(new_node.args) if a == node.ret])
for i, arg_type in enumerate(new_node.args):
if i != position:
term = choice(pset.terminals[arg_type])
if isclass(term):
term = term()
new_subtree[i] = term
new_subtree[position:position + 1] = individual[slice_]
new_subtree.insert(0, new_node)
individual[slice_] = new_subtree
return individual,
def mutShrink(individual):
"""This operator shrinks the *individual* by choosing randomly a branch and
replacing it with one of the branch's arguments (also randomly chosen).
:param individual: The tree to be shrinked.
:returns: A tuple of one tree.
"""
# We don't want to "shrink" the root
if len(individual) < 3 or individual.height <= 1:
return individual,
iprims = []
for i, node in enumerate(individual[1:], 1):
if isinstance(node, Primitive) and node.ret in node.args:
iprims.append((i, node))
if len(iprims) != 0:
index, prim = random.choice(iprims)
arg_idx = random.choice([i for i, type_ in enumerate(prim.args) if type_ == prim.ret])
rindex = index + 1
for _ in range(arg_idx + 1):
rslice = individual.searchSubtree(rindex)
subtree = individual[rslice]
rindex += len(subtree)
slice_ = individual.searchSubtree(index)
individual[slice_] = subtree
return individual,
######################################
# GP bloat control decorators #
######################################
def staticLimit(key, max_value):
"""Implement a static limit on some measurement on a GP tree, as defined
by Koza in [Koza1989]. It may be used to decorate both crossover and
mutation operators. When an invalid (over the limit) child is generated,
it is simply replaced by one of its parents, randomly selected.
This operator can be used to avoid memory errors occurring when the tree
gets higher than 90 levels (as Python puts a limit on the call stack
depth), because it can ensure that no tree higher than this limit will ever
be accepted in the population, except if it was generated at initialization
time.
:param key: The function to use in order the get the wanted value. For
instance, on a GP tree, ``operator.attrgetter('height')`` may
be used to set a depth limit, and ``len`` to set a size limit.
:param max_value: The maximum value allowed for the given measurement.
:returns: A decorator that can be applied to a GP operator using \
:func:`~deap.base.Toolbox.decorate`
.. note::
If you want to reproduce the exact behavior intended by Koza, set
*key* to ``operator.attrgetter('height')`` and *max_value* to 17.
.. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of
Computers by Means of Natural Selection (MIT Press,
Cambridge, MA, 1992)
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
keep_inds = [copy.deepcopy(ind) for ind in args]
new_inds = list(func(*args, **kwargs))
for i, ind in enumerate(new_inds):
if key(ind) > max_value:
new_inds[i] = random.choice(keep_inds)
return new_inds
return wrapper
return decorator
######################################
# GP bloat control algorithms #
######################################
def harm(population, toolbox, cxpb, mutpb, ngen,
alpha, beta, gamma, rho, nbrindsmodel=-1, mincutoff=20,
stats=None, halloffame=None, verbose=__debug__):
"""Implement bloat control on a GP evolution using HARM-GP, as defined in
[Gardner2015]. It is implemented in the form of an evolution algorithm
(similar to :func:`~deap.algorithms.eaSimple`).
:param population: A list of individuals.
:param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
operators.
:param cxpb: The probability of mating two individuals.
:param mutpb: The probability of mutating an individual.
:param ngen: The number of generation.
:param alpha: The HARM *alpha* parameter.
:param beta: The HARM *beta* parameter.
:param gamma: The HARM *gamma* parameter.
:param rho: The HARM *rho* parameter.
:param nbrindsmodel: The number of individuals to generate in order to
model the natural distribution. -1 is a special
value which uses the equation proposed in
[Gardner2015] to set the value of this parameter :
max(2000, len(population))
:param mincutoff: The absolute minimum value for the cutoff point. It is
used to ensure that HARM does not shrink the population
too much at the beginning of the evolution. The default
value is usually fine.
:param stats: A :class:`~deap.tools.Statistics` object that is updated
inplace, optional.
:param halloffame: A :class:`~deap.tools.HallOfFame` object that will
contain the best individuals, optional.
:param verbose: Whether or not to log the statistics.
:returns: The final population
:returns: A class:`~deap.tools.Logbook` with the statistics of the
evolution
This function expects the :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
:meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
registered in the toolbox.
.. note::
The recommended values for the HARM-GP parameters are *alpha=0.05*,
*beta=10*, *gamma=0.25*, *rho=0.9*. However, these parameters can be
adjusted to perform better on a specific problem (see the relevant
paper for tuning information). The number of individuals used to
model the natural distribution and the minimum cutoff point are less
important, their default value being effective in most cases.
.. [Gardner2015] M.-A. Gardner, C. Gagne, and M. Parizeau, Controlling
Code Growth by Dynamically Shaping the Genotype Size Distribution,
Genetic Programming and Evolvable Machines, 2015,
DOI 10.1007/s10710-015-9242-8
"""
def _genpop(n, pickfrom=[], acceptfunc=lambda s: True, producesizes=False):
# Generate a population of n individuals, using individuals in
# *pickfrom* if possible, with a *acceptfunc* acceptance function.
# If *producesizes* is true, also return a list of the produced
# individuals sizes.
# This function is used 1) to generate the natural distribution
# (in this case, pickfrom and acceptfunc should be let at their
# default values) and 2) to generate the final population, in which
# case pickfrom should be the natural population previously generated
# and acceptfunc a function implementing the HARM-GP algorithm.
producedpop = []
producedpopsizes = []
while len(producedpop) < n:
if len(pickfrom) > 0:
# If possible, use the already generated
# individuals (more efficient)
aspirant = pickfrom.pop()
if acceptfunc(len(aspirant)):
producedpop.append(aspirant)
if producesizes:
producedpopsizes.append(len(aspirant))
else:
opRandom = random.random()
if opRandom < cxpb:
# Crossover
aspirant1, aspirant2 = toolbox.mate(*map(toolbox.clone,
toolbox.select(population, 2)))
del aspirant1.fitness.values, aspirant2.fitness.values
if acceptfunc(len(aspirant1)):
producedpop.append(aspirant1)
if producesizes:
producedpopsizes.append(len(aspirant1))
if len(producedpop) < n and acceptfunc(len(aspirant2)):
producedpop.append(aspirant2)
if producesizes:
producedpopsizes.append(len(aspirant2))
else:
aspirant = toolbox.clone(toolbox.select(population, 1)[0])
if opRandom - cxpb < mutpb:
# Mutation
aspirant = toolbox.mutate(aspirant)[0]
del aspirant.fitness.values
if acceptfunc(len(aspirant)):
producedpop.append(aspirant)
if producesizes:
producedpopsizes.append(len(aspirant))
if producesizes:
return producedpop, producedpopsizes
else:
return producedpop
def halflifefunc(x):
return x * float(alpha) + beta
if nbrindsmodel == -1:
nbrindsmodel = max(2000, len(population))
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
record = stats.compile(population) if stats else {}
logbook.record(gen=0, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
# Begin the generational process
for gen in range(1, ngen + 1):
# Estimation population natural distribution of sizes
naturalpop, naturalpopsizes = _genpop(nbrindsmodel, producesizes=True)
naturalhist = [0] * (max(naturalpopsizes) + 3)
for indsize in naturalpopsizes:
# Kernel density estimation application
naturalhist[indsize] += 0.4
naturalhist[indsize - 1] += 0.2
naturalhist[indsize + 1] += 0.2
naturalhist[indsize + 2] += 0.1
if indsize - 2 >= 0:
naturalhist[indsize - 2] += 0.1
# Normalization
naturalhist = [val * len(population) / nbrindsmodel for val in naturalhist]
# Cutoff point selection
sortednatural = sorted(naturalpop, key=lambda ind: ind.fitness)
cutoffcandidates = sortednatural[int(len(population) * rho - 1):]
# Select the cutoff point, with an absolute minimum applied
# to avoid weird cases in the first generations
cutoffsize = max(mincutoff, len(min(cutoffcandidates, key=len)))
# Compute the target distribution
def targetfunc(x):
return (gamma * len(population) * math.log(2) /
halflifefunc(x)) * math.exp(-math.log(2) *
(x - cutoffsize) / halflifefunc(x))
targethist = [naturalhist[binidx] if binidx <= cutoffsize else
targetfunc(binidx) for binidx in range(len(naturalhist))]
# Compute the probabilities distribution
probhist = [t / n if n > 0 else t for n, t in zip(naturalhist, targethist)]
def probfunc(s):
return probhist[s] if s < len(probhist) else targetfunc(s)
def acceptfunc(s):
return random.random() <= probfunc(s)
# Generate offspring using the acceptance probabilities
# previously computed
offspring = _genpop(len(population), pickfrom=naturalpop,
acceptfunc=acceptfunc, producesizes=False)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Update the hall of fame with the generated individuals
if halloffame is not None:
halloffame.update(offspring)
# Replace the current population by the offspring
population[:] = offspring
# Append the current generation statistics to the logbook
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
return population, logbook
def graph(expr):
"""Construct the graph of a tree expression. The tree expression must be
valid. It returns in order a node list, an edge list, and a dictionary of
the per node labels. The node are represented by numbers, the edges are
tuples connecting two nodes (number), and the labels are values of a
dictionary for which keys are the node numbers.
:param expr: A tree expression to convert into a graph.
:returns: A node list, an edge list, and a dictionary of labels.
The returned objects can be used directly to populate a
`pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ graph::
import pygraphviz as pgv
# [...] Execution of code that produce a tree expression
nodes, edges, labels = graph(expr)
g = pgv.AGraph()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
g.layout(prog="dot")
for i in nodes:
n = g.get_node(i)
n.attr["label"] = labels[i]
g.draw("tree.pdf")
or a `NetworX <http://networkx.github.com/>`_ graph::
import matplotlib.pyplot as plt
import networkx as nx
# [...] Execution of code that produce a tree expression
nodes, edges, labels = graph(expr)
g = nx.Graph()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
pos = nx.graphviz_layout(g, prog="dot")
nx.draw_networkx_nodes(g, pos)
nx.draw_networkx_edges(g, pos)
nx.draw_networkx_labels(g, pos, labels)
plt.show()
.. note::
We encourage you to use `pygraphviz
<http://networkx.lanl.gov/pygraphviz/>`_ as the nodes might be plotted
out of order when using `NetworX <http://networkx.github.com/>`_.
"""
nodes = range(len(expr))
edges = list()
labels = dict()
stack = []
for i, node in enumerate(expr):
if stack:
edges.append((stack[-1][0], i))
stack[-1][1] -= 1
labels[i] = node.name if isinstance(node, Primitive) else node.value
stack.append([i, node.arity])
while stack and stack[-1][1] == 0:
stack.pop()
return nodes, edges, labels
######################################
# GSGP Mutation #
######################################
def mutSemantic(individual, gen_func=genGrow, pset=None, ms=None, min=2, max=6):
"""
Implementation of the Semantic Mutation operator. [Geometric semantic genetic programming, Moraglio et al., 2012]
mutated_individual = individual + logistic * (random_tree1 - random_tree2)
:param individual: individual to mutate
:param gen_func: function responsible for the generation of the random tree that will be used during the mutation
:param pset: Primitive Set, which contains terminal and operands to be used during the evolution
:param ms: Mutation Step
:param min: min depth of the random tree
:param max: max depth of the random tree
:return: mutated individual
The mutated contains the original individual
>>> import operator
>>> def lf(x): return 1 / (1 + math.exp(-x));
>>> pset = PrimitiveSet("main", 2)
>>> pset.addPrimitive(operator.sub, 2)
>>> pset.addTerminal(3)
>>> pset.addPrimitive(lf, 1, name="lf")
>>> pset.addPrimitive(operator.add, 2)
>>> pset.addPrimitive(operator.mul, 2)
>>> individual = genGrow(pset, 1, 3)
>>> mutated = mutSemantic(individual, pset=pset, max=2)
>>> ctr = sum([m.name == individual[i].name for i, m in enumerate(mutated[0])])
>>> ctr == len(individual)
True
"""
for p in ['lf', 'mul', 'add', 'sub']:
assert p in pset.mapping, "A '" + p + "' function is required in order to perform semantic mutation"
tr1 = gen_func(pset, min, max)
tr2 = gen_func(pset, min, max)
# Wrap mutation with a logistic function
tr1.insert(0, pset.mapping['lf'])
tr2.insert(0, pset.mapping['lf'])
if ms is None:
ms = random.uniform(0, 2)
mutation_step = Terminal(ms, False, object)
# Create the root
new_ind = individual
new_ind.insert(0, pset.mapping["add"])
# Append the left branch
new_ind.append(pset.mapping["mul"])
new_ind.append(mutation_step)
new_ind.append(pset.mapping["sub"])
# Append the right branch
new_ind.extend(tr1)
new_ind.extend(tr2)
return new_ind,
def cxSemantic(ind1, ind2, gen_func=genGrow, pset=None, min=2, max=6):
"""
Implementation of the Semantic Crossover operator [Geometric semantic genetic programming, Moraglio et al., 2012]
offspring1 = random_tree1 * ind1 + (1 - random_tree1) * ind2
offspring2 = random_tree1 * ind2 + (1 - random_tree1) * ind1
:param ind1: first parent
:param ind2: second parent
:param gen_func: function responsible for the generation of the random tree that will be used during the mutation
:param pset: Primitive Set, which contains terminal and operands to be used during the evolution
:param min: min depth of the random tree
:param max: max depth of the random tree
:return: offsprings
The mutated offspring contains parents
>>> import operator
>>> def lf(x): return 1 / (1 + math.exp(-x));
>>> pset = PrimitiveSet("main", 2)
>>> pset.addPrimitive(operator.sub, 2)
>>> pset.addTerminal(3)
>>> pset.addPrimitive(lf, 1, name="lf")
>>> pset.addPrimitive(operator.add, 2)
>>> pset.addPrimitive(operator.mul, 2)
>>> ind1 = genGrow(pset, 1, 3)
>>> ind2 = genGrow(pset, 1, 3)
>>> new_ind1, new_ind2 = cxSemantic(ind1, ind2, pset=pset, max=2)
>>> ctr = sum([n.name == ind1[i].name for i, n in enumerate(new_ind1)])
>>> ctr == len(ind1)
True
>>> ctr = sum([n.name == ind2[i].name for i, n in enumerate(new_ind2)])
>>> ctr == len(ind2)
True
"""
for p in ['lf', 'mul', 'add', 'sub']:
assert p in pset.mapping, "A '" + p + "' function is required in order to perform semantic crossover"
tr = gen_func(pset, min, max)
tr.insert(0, pset.mapping['lf'])
new_ind1 = ind1
new_ind1.insert(0, pset.mapping["mul"])
new_ind1.insert(0, pset.mapping["add"])
new_ind1.extend(tr)
new_ind1.append(pset.mapping["mul"])
new_ind1.append(pset.mapping["sub"])
new_ind1.append(Terminal(1.0, False, object))
new_ind1.extend(tr)
new_ind1.extend(ind2)
new_ind2 = ind2
new_ind2.insert(0, pset.mapping["mul"])
new_ind2.insert(0, pset.mapping["add"])
new_ind2.extend(tr)
new_ind2.append(pset.mapping["mul"])
new_ind2.append(pset.mapping["sub"])
new_ind2.append(Terminal(1.0, False, object))
new_ind2.extend(tr)
new_ind2.extend(ind1)
return new_ind1, new_ind2
if __name__ == "__main__":
import doctest
doctest.testmod()
|