File: 3_6_using_the_toolbox.py

package info (click to toggle)
deap 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,500 kB
  • sloc: python: 8,558; ansic: 1,054; cpp: 592; makefile: 94; sh: 5
file content (56 lines) | stat: -rw-r--r-- 1,907 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
## 3.6 Using the Toolbox
from deap import base
from deap import tools

toolbox = base.Toolbox()

def evaluateInd(individual):
    # Do some computation
    result = sum(individual)
    return result,

toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("evaluate", evaluateInd)

## Data structure and initializer creation
import random
from deap import creator
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox.register("attr_float", random.random)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, 10)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

pop = toolbox.population(n=100)
CXPB, MUTPB, NGEN= 0.7, 0.3, 25

## 3.6.1 Using the Tools
for g in range(NGEN):
    # Select the next generation individuals
    offspring = toolbox.select(pop, len(pop))
    # Clone the selected individuals
    offspring = map(toolbox.clone, offspring)

    # Apply crossover on the offspring
    for child1, child2 in zip(offspring[::2], offspring[1::2]):
        if random.random() < CXPB:
            toolbox.mate(child1, child2)
            del child1.fitness.values
            del child2.fitness.values

    # Apply mutation on the offspring
    for mutant in offspring:
        if random.random() < MUTPB:
            toolbox.mutate(mutant)
            del mutant.fitness.values

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    # The population is entirely replaced by the offspring
    pop[:] = offspring