File: logbook.py

package info (click to toggle)
deap 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,500 kB
  • sloc: python: 8,558; ansic: 1,054; cpp: 592; makefile: 94; sh: 5
file content (62 lines) | stat: -rw-r--r-- 1,407 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pickle

from deap import tools

from stats import record

logbook = tools.Logbook()
logbook.record(gen=0, evals=30, **record)

print(logbook)

gen, avg = logbook.select("gen", "avg")

with open("logbook.pkl", "w") as lb_file:
	pickle.dump(logbook, lb_file)

# Cleaning the pickle file ...
import os
os.remove("logbook.pkl")

logbook.header = "gen", "avg", "spam"
print(logbook)

print(logbook.stream)
logbook.record(gen=1, evals=15, **record)
print(logbook.stream)

from multistats import record

logbook = tools.Logbook()
logbook.record(gen=0, evals=30, **record)

logbook.header = "gen", "evals", "fitness", "size"
logbook.chapters["fitness"].header = "min", "avg", "max"
logbook.chapters["size"].header = "min", "avg", "max"

print(logbook)

gen = logbook.select("gen")
fit_mins = logbook.chapters["fitness"].select("min")
size_avgs = logbook.chapters["size"].select("avg")

import matplotlib.pyplot as plt

fig, ax1 = plt.subplots()
line1 = ax1.plot(gen, fit_mins, "b-", label="Minimum Fitness")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels():
    tl.set_color("b")

ax2 = ax1.twinx()
line2 = ax2.plot(gen, size_avgs, "r-", label="Average Size")
ax2.set_ylabel("Size", color="r")
for tl in ax2.get_yticklabels():
    tl.set_color("r")

lns = line1 + line2
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc="center right")

plt.show()