1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""Implementation of the Multiswarm Particle Swarm Optimization algorithm as
presented in *Blackwell, Branke, and Li, 2008, Particle Swarms for Dynamic
Optimization Problems.*
"""
import itertools
import math
import operator
import random
import numpy
try:
from itertools import imap
except:
# Python 3 nothing to do
pass
else:
map = imap
from deap import base
from deap.benchmarks import movingpeaks
from deap import creator
from deap import tools
scenario = movingpeaks.SCENARIO_2
NDIM = 5
BOUNDS = [scenario["min_coord"], scenario["max_coord"]]
mpb = movingpeaks.MovingPeaks(dim=NDIM, **scenario)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Particle", list, fitness=creator.FitnessMax, speed=list,
best=None, bestfit=creator.FitnessMax)
creator.create("Swarm", list, best=None, bestfit=creator.FitnessMax)
def generate(pclass, dim, pmin, pmax, smin, smax):
part = pclass(random.uniform(pmin, pmax) for _ in range(dim))
part.speed = [random.uniform(smin, smax) for _ in range(dim)]
return part
def convertQuantum(swarm, rcloud, centre, dist):
dim = len(swarm[0])
for part in swarm:
position = [random.gauss(0, 1) for _ in range(dim)]
dist = math.sqrt(sum(x**2 for x in position))
if dist == "gaussian":
u = abs(random.gauss(0, 1.0/3.0))
part[:] = [(rcloud * x * u**(1.0/dim) / dist) + c for x, c in zip(position, centre)]
elif dist == "uvd":
u = random.random()
part[:] = [(rcloud * x * u**(1.0/dim) / dist) + c for x, c in zip(position, centre)]
elif dist == "nuvd":
u = abs(random.gauss(0, 1.0/3.0))
part[:] = [(rcloud * x * u / dist) + c for x, c in zip(position, centre)]
del part.fitness.values
del part.bestfit.values
part.best = None
return swarm
def updateParticle(part, best, chi, c):
ce1 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce2 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce1_p = map(operator.mul, ce1, map(operator.sub, best, part))
ce2_g = map(operator.mul, ce2, map(operator.sub, part.best, part))
a = map(operator.sub,
map(operator.mul,
itertools.repeat(chi),
map(operator.add, ce1_p, ce2_g)),
map(operator.mul,
itertools.repeat(1 - chi),
part.speed))
part.speed = list(map(operator.add, part.speed, a))
part[:] = list(map(operator.add, part, part.speed))
toolbox = base.Toolbox()
toolbox.register("particle", generate, creator.Particle, dim=NDIM,
pmin=BOUNDS[0], pmax=BOUNDS[1], smin=-(BOUNDS[1] - BOUNDS[0])/2.0,
smax=(BOUNDS[1] - BOUNDS[0])/2.0)
toolbox.register("swarm", tools.initRepeat, creator.Swarm, toolbox.particle)
toolbox.register("update", updateParticle, chi=0.729843788, c=2.05)
toolbox.register("convert", convertQuantum, dist="nuvd")
toolbox.register("evaluate", mpb)
def main(verbose=True):
NSWARMS = 1
NPARTICLES = 5
NEXCESS = 3
RCLOUD = 0.5 # 0.5 times the move severity
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "nswarm", "evals", "error", "offline_error", "avg", "max"
# Generate the initial population
population = [toolbox.swarm(n=NPARTICLES) for _ in range(NSWARMS)]
# Evaluate each particle
for swarm in population:
for part in swarm:
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:]) # Get the position
part.bestfit.values = part.fitness.values # Get the fitness
if not swarm.best or part.fitness > swarm.bestfit:
swarm.best = toolbox.clone(part[:]) # Get the position
swarm.bestfit.values = part.fitness.values # Get the fitness
record = stats.compile(itertools.chain(*population))
logbook.record(gen=0, evals=mpb.nevals, nswarm=len(population),
error=mpb.currentError(), offline_error=mpb.offlineError(), **record)
if verbose:
print(logbook.stream)
generation = 1
while mpb.nevals < 5e5:
# Check for convergence
rexcl = (BOUNDS[1] - BOUNDS[0]) / (2 * len(population)**(1.0/NDIM))
not_converged = 0
worst_swarm_idx = None
worst_swarm = None
for i, swarm in enumerate(population):
# Compute the diameter of the swarm
for p1, p2 in itertools.combinations(swarm, 2):
d = math.sqrt(sum((x1 - x2)**2. for x1, x2 in zip(p1, p2)))
if d > 2*rexcl:
not_converged += 1
# Search for the worst swarm according to its global best
if not worst_swarm or swarm.bestfit < worst_swarm.bestfit:
worst_swarm_idx = i
worst_swarm = swarm
break
# If all swarms have converged, add a swarm
if not_converged == 0:
population.append(toolbox.swarm(n=NPARTICLES))
# If too many swarms are roaming, remove the worst swarm
elif not_converged > NEXCESS:
population.pop(worst_swarm_idx)
# Update and evaluate the swarm
for swarm in population:
# Check for change
if swarm.best and toolbox.evaluate(swarm.best) != swarm.bestfit.values:
# Convert particles to quantum particles
swarm[:] = toolbox.convert(swarm, rcloud=RCLOUD, centre=swarm.best)
swarm.best = None
del swarm.bestfit.values
for part in swarm:
# Not necessary to update if it is a new swarm
# or a swarm just converted to quantum
if swarm.best and part.best:
toolbox.update(part, swarm.best)
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:])
part.bestfit.values = part.fitness.values
if not swarm.best or part.fitness > swarm.bestfit:
swarm.best = toolbox.clone(part[:])
swarm.bestfit.values = part.fitness.values
record = stats.compile(itertools.chain(*population))
logbook.record(gen=generation, evals=mpb.nevals, nswarm=len(population),
error=mpb.currentError(), offline_error=mpb.offlineError(), **record)
if verbose:
print(logbook.stream)
# Apply exclusion
reinit_swarms = set()
for s1, s2 in itertools.combinations(range(len(population)), 2):
# Swarms must have a best and not already be set to reinitialize
if population[s1].best and population[s2].best and not (s1 in reinit_swarms or s2 in reinit_swarms):
dist = 0
for x1, x2 in zip(population[s1].best, population[s2].best):
dist += (x1 - x2)**2.
dist = math.sqrt(dist)
if dist < rexcl:
if population[s1].bestfit <= population[s2].bestfit:
reinit_swarms.add(s1)
else:
reinit_swarms.add(s2)
# Reinitialize and evaluate swarms
for s in reinit_swarms:
population[s] = toolbox.swarm(n=NPARTICLES)
for part in population[s]:
part.fitness.values = toolbox.evaluate(part)
# Update swarm's attractors personal best and global best
if not part.best or part.fitness > part.bestfit:
part.best = toolbox.clone(part[:])
part.bestfit.values = part.fitness.values
if not population[s].best or part.fitness > population[s].bestfit:
population[s].best = toolbox.clone(part[:])
population[s].bestfit.values = part.fitness.values
generation += 1
if __name__ == "__main__":
main()
|