1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
## 1.1 Types
from deap import base, creator
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
## 1.2 Initialization
import random
from deap import tools
IND_SIZE = 10
toolbox = base.Toolbox()
toolbox.register("attribute", random.random)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attribute, n=IND_SIZE)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
## 1.3 Operators
def evaluate(individual):
return sum(individual),
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("evaluate", evaluate)
## 1.4 Algorithms
def main():
pop = toolbox.population(n=50)
CXPB, MUTPB, NGEN = 0.5, 0.2, 40
# Evaluate the entire population
fitnesses = map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
for g in range(NGEN):
# Select the next generation individuals
offspring = toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = map(toolbox.clone, offspring)
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < CXPB:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < MUTPB:
toolbox.mutate(mutant)
del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# The population is entirely replaced by the offspring
pop[:] = offspring
return pop
if __name__ == "__main__":
main()
|