File: basic.py

package info (click to toggle)
deap 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,372 kB
  • sloc: python: 9,874; ansic: 1,054; cpp: 592; javascript: 153; makefile: 95; sh: 7
file content (85 lines) | stat: -rw-r--r-- 2,816 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#    This file is part of EAP.
#
#    EAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    EAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with EAP. If not, see <http://www.gnu.org/licenses/>.

import random
import array

import numpy

from deap import base
from deap import benchmarks
from deap import creator
from deap import tools

# Problem dimension
NDIM = 10

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, -3, 3)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, NDIM)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("select", tools.selRandom, k=3)
toolbox.register("evaluate", benchmarks.sphere)

def main():
    # Differential evolution parameters
    CR = 0.25
    F = 1  
    MU = 300
    NGEN = 200    

    pop = toolbox.population(n=MU);
    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)

    logbook = tools.Logbook()
    logbook.header = "gen", "evals", "std", "min", "avg", "max"

    # Evaluate the individuals
    fitnesses = toolbox.map(toolbox.evaluate, pop)
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    record = stats.compile(pop)
    logbook.record(gen=0, evals=len(pop), **record)
    print(logbook.stream)

    for g in range(1, NGEN):
        for k, agent in enumerate(pop):
            a,b,c = toolbox.select(pop)
            y = toolbox.clone(agent)
            index = random.randrange(NDIM)
            for i, value in enumerate(agent):
                if i == index or random.random() < CR:
                    y[i] = a[i] + F*(b[i]-c[i])
            y.fitness.values = toolbox.evaluate(y)
            if y.fitness > agent.fitness:
                pop[k] = y
        hof.update(pop)
        record = stats.compile(pop)
        logbook.record(gen=g, evals=len(pop), **record)
        print(logbook.stream)

    print("Best individual is ", hof[0], hof[0].fitness.values[0])

if __name__ == "__main__":
    main()