1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""Implementation of the Dynamic Differential Evolution algorithm as presented
in *Mendes and Mohais, 2005, DynDE: A Differential Evolution for Dynamic
Optimization Problems.*
"""
import array
import itertools
import math
import operator
import random
import numpy
from deap import base
from deap.benchmarks import movingpeaks
from deap import creator
from deap import tools
scenario = movingpeaks.SCENARIO_2
NDIM = 5
BOUNDS = [scenario["min_coord"], scenario["max_coord"]]
mpb = movingpeaks.MovingPeaks(dim=NDIM, **scenario)
def brown_ind(iclass, best, sigma):
return iclass(random.gauss(x, sigma) for x in best)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUNDS[0], BOUNDS[1])
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, NDIM)
toolbox.register("brownian_individual", brown_ind, creator.Individual, sigma=0.3)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("select", random.sample, k=4)
toolbox.register("best", tools.selBest, k=1)
toolbox.register("evaluate", mpb)
def main(verbose=True):
NPOP = 10 # Should be equal to the number of peaks
CR = 0.6
F = 0.4
regular, brownian = 4, 2
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "error", "offline_error", "avg", "max"
# Initialize populations
populations = [toolbox.population(n=regular + brownian) for _ in range(NPOP)]
# Evaluate the individuals
for idx, subpop in enumerate(populations):
fitnesses = toolbox.map(toolbox.evaluate, subpop)
for ind, fit in zip(subpop, fitnesses):
ind.fitness.values = fit
record = stats.compile(itertools.chain(*populations))
logbook.record(gen=0, evals=mpb.nevals, error=mpb.currentError(),
offline_error=mpb.offlineError(), **record)
if verbose:
print(logbook.stream)
g = 1
while mpb.nevals < 5e5:
# Detect a change and invalidate fitnesses if necessary
bests = [toolbox.best(subpop)[0] for subpop in populations]
if any(b.fitness.values != toolbox.evaluate(b) for b in bests):
for individual in itertools.chain(*populations):
del individual.fitness.values
# Apply exclusion
rexcl = (BOUNDS[1] - BOUNDS[0]) / (2 * NPOP**(1.0/NDIM))
for i, j in itertools.combinations(range(NPOP), 2):
if bests[i].fitness.valid and bests[j].fitness.valid:
d = sum((bests[i][k] - bests[j][k])**2 for k in range(NDIM))
d = math.sqrt(d)
if d < rexcl:
if bests[i].fitness < bests[j].fitness:
k = i
else:
k = j
populations[k] = toolbox.population(n=regular + brownian)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in itertools.chain(*populations) if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
record = stats.compile(itertools.chain(*populations))
logbook.record(gen=g, evals=mpb.nevals, error=mpb.currentError(),
offline_error=mpb.offlineError(), **record)
if verbose:
print(logbook.stream)
# Evolve the sub-populations
for idx, subpop in enumerate(populations):
newpop = []
xbest, = toolbox.best(subpop)
# Apply regular DE to the first part of the population
for individual in subpop[:regular]:
x1, x2, x3, x4 = toolbox.select(subpop)
offspring = toolbox.clone(individual)
index = random.randrange(NDIM)
for i, value in enumerate(individual):
if i == index or random.random() < CR:
offspring[i] = xbest[i] + F * (x1[i] + x2[i] - x3[i] - x4[i])
offspring.fitness.values = toolbox.evaluate(offspring)
if offspring.fitness >= individual.fitness:
newpop.append(offspring)
else:
newpop.append(individual)
# Apply Brownian to the last part of the population
newpop.extend(toolbox.brownian_individual(xbest) for _ in range(brownian))
# Evaluate the brownian individuals
for individual in newpop[-brownian:]:
individual.fitness.value = toolbox.evaluate(individual)
# Replace the population
populations[idx] = newpop
g += 1
return logbook
if __name__ == "__main__":
main()
|