1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
import random
import numpy
import pytest
from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import hypervolume
from deap import cma
from deap import creator
from deap import tools
FITCLSNAME = "FIT_TYPE"
INDCLSNAME = "IND_TYPE"
HV_THRESHOLD = 116.0 # 120.777 is Optimal value
def teardown_():
# Messy way to remove a class from the creator
del creator.__dict__[FITCLSNAME]
del creator.__dict__[INDCLSNAME]
@pytest.fixture
def setup_teardown_single_obj():
creator.create(FITCLSNAME, base.Fitness, weights=(-1.0,))
creator.create(INDCLSNAME, list, fitness=creator.__dict__[FITCLSNAME])
yield
teardown_()
@pytest.fixture
def setup_teardown_multi_obj():
creator.create(FITCLSNAME, base.Fitness, weights=(-1.0, -1.0))
creator.create(INDCLSNAME, list, fitness=creator.__dict__[FITCLSNAME])
yield
teardown_()
@pytest.fixture
def setup_teardown_multi_obj_numpy():
creator.create(FITCLSNAME, base.Fitness, weights=(-1.0, -1.0))
creator.create(INDCLSNAME, numpy.ndarray, fitness=creator.__dict__[FITCLSNAME])
yield
teardown_()
def test_cma(setup_teardown_single_obj):
NDIM = 5
strategy = cma.Strategy(centroid=[0.0]*NDIM, sigma=1.0)
toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.sphere)
toolbox.register("generate", strategy.generate, creator.__dict__[INDCLSNAME])
toolbox.register("update", strategy.update)
pop, _ = algorithms.eaGenerateUpdate(toolbox, ngen=100)
best, = tools.selBest(pop, k=1)
assert best.fitness.values < (1e-8,), "CMA algorithm did not converged properly."
def test_nsga2(setup_teardown_multi_obj):
NDIM = 5
BOUND_LOW, BOUND_UP = 0.0, 1.0
MU = 16
NGEN = 100
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
toolbox.register("select", tools.selNSGA2)
pop = toolbox.population(n=MU)
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop, len(pop))
for gen in range(1, NGEN):
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= 0.9:
toolbox.mate(ind1, ind2)
toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop + offspring, MU)
hv = hypervolume(pop, [11.0, 11.0])
# hv = 120.777 # Optimal value
assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)
for ind in pop:
assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP))
def test_mo_cma_es(setup_teardown_multi_obj_numpy):
def distance(feasible_ind, original_ind):
"""A distance function to the feasibility region."""
return sum((f - o)**2 for f, o in zip(feasible_ind, original_ind))
def closest_feasible(individual):
"""A function returning a valid individual from an invalid one."""
feasible_ind = numpy.array(individual)
feasible_ind = numpy.maximum(BOUND_LOW, feasible_ind)
feasible_ind = numpy.minimum(BOUND_UP, feasible_ind)
return feasible_ind
def valid(individual):
"""Determines if the individual is valid or not."""
if any(individual < BOUND_LOW) or any(individual > BOUND_UP):
return False
return True
NDIM = 5
BOUND_LOW, BOUND_UP = 0.0, 1.0
MU, LAMBDA = 10, 10
NGEN = 500
numpy.random.seed(128)
# The MO-CMA-ES algorithm takes a full population as argument
population = [creator.__dict__[INDCLSNAME](x) for x in numpy.random.uniform(BOUND_LOW, BOUND_UP, (MU, NDIM))]
toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.decorate("evaluate", tools.ClosestValidPenalty(valid, closest_feasible, 1.0e+6, distance))
for ind in population:
ind.fitness.values = toolbox.evaluate(ind)
strategy = cma.StrategyMultiObjective(population, sigma=1.0, mu=MU, lambda_=LAMBDA)
toolbox.register("generate", strategy.generate, creator.__dict__[INDCLSNAME])
toolbox.register("update", strategy.update)
for gen in range(NGEN):
# Generate a new population
population = toolbox.generate()
# Evaluate the individuals
fitnesses = toolbox.map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
# Update the strategy with the evaluated individuals
toolbox.update(population)
# Note that we use a penalty to guide the search to feasible solutions,
# but there is no guarantee that individuals are valid.
# We expect the best individuals will be within bounds or very close.
num_valid = 0
for ind in strategy.parents:
dist = distance(closest_feasible(ind), ind)
if numpy.isclose(dist, 0.0, rtol=1.e-5, atol=1.e-5):
num_valid += 1
assert num_valid >= len(strategy.parents)
# Note that NGEN=500 is enough to get consistent hypervolume > 116,
# but not 119. More generations would help but would slow down testing.
hv = hypervolume(strategy.parents, [11.0, 11.0])
assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)
def test_nsga3(setup_teardown_multi_obj):
NDIM = 5
BOUND_LOW, BOUND_UP = 0.0, 1.0
MU = 16
NGEN = 100
ref_points = tools.uniform_reference_points(2, p=12)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
toolbox.register("select", tools.selNSGA3, ref_points=ref_points)
pop = toolbox.population(n=MU)
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop, len(pop))
# Begin the generational process
for gen in range(1, NGEN):
offspring = algorithms.varAnd(pop, toolbox, 1.0, 1.0)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population
pop = toolbox.select(pop + offspring, MU)
hv = hypervolume(pop, [11.0, 11.0])
# hv = 120.777 # Optimal value
assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)
for ind in pop:
assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP))
|