1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
'''
Copyright (C) 2024-2025 Mo Zhou <lumin@debian.org>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
from types import SimpleNamespace
import sys
import os
import numpy as np
import pytest
from debgpt import defaults
from debgpt import embeddings
@pytest.fixture
def conf() -> object:
return defaults.Config()
def test_random_embedding_embed(conf):
model = embeddings.RandomEmbedding(conf)
vector = model.embed('hello world')
assert vector.ndim == 1
# test __call__
emb = model('hello world')
assert emb.ndim == 1
assert np.isclose(np.linalg.norm(emb), 1.0)
def test_random_embedding_batch_embed(conf):
model = embeddings.RandomEmbedding(conf)
matrix = model.batch_embed(['hello world', 'goodbye world'])
assert matrix.ndim == 2
# test __call__
emb = model(['hello world', 'goodbye world'])
assert emb.ndim == 2
assert np.isclose(np.linalg.norm(emb, axis=1), 1.0).all()
def test_openai_embedding_embed(conf):
if conf.openai_api_key == 'your-openai-api-key':
pytest.skip('OpenAI API key is not provided')
model = embeddings.OpenAIEmbedding(conf)
vector = model.embed('hello world')
assert vector.ndim == 1
print(f'vector.shape:', vector.shape)
print(f'vector.min:', vector.min())
print(f'vector.max:', vector.max())
print(f'vector.mean:', vector.mean())
print(f'vector.std:', vector.std())
print(f'vector[:10]:', vector[:10])
print(f'vector[-10:]:', vector[-10:])
# test __call__
emb = model('hello world')
assert emb.ndim == 1
assert np.isclose(np.linalg.norm(emb), 1.0)
def test_openai_embedding_batch_embed(conf):
if conf.openai_api_key == 'your-openai-api-key':
pytest.skip('OpenAI API key is not provided')
model = embeddings.OpenAIEmbedding(conf)
matrix = model.batch_embed(['hello world', 'goodbye world'])
assert matrix.ndim == 2
print(f'matrix.shape:', matrix.shape)
print(f'matrix.min:', matrix.min())
print(f'matrix.max:', matrix.max())
print(f'matrix.mean:', matrix.mean())
print(f'matrix.std:', matrix.std())
print(f'matrix[:, :10]:', matrix[:, :10])
print(f'matrix[:, -10:]:', matrix[:, -10:])
# test __call__
emb = model(['hello world', 'goodbye world'])
assert emb.ndim == 2
assert np.isclose(np.linalg.norm(emb, axis=1), 1.0).all()
def test_google_embedding_embed(conf):
if conf.google_api_key == 'your-google-api-key':
pytest.skip('Google API key is not provided')
model = embeddings.GoogleEmbedding(conf)
vector = model.embed('hello world')
assert vector.ndim == 1
assert np.isclose(np.linalg.norm(vector), 1.0)
def test_google_embedding_batch_embed(conf):
if conf.google_api_key == 'your-google-api-key':
pytest.skip('Google API key is not provided')
model = embeddings.GoogleEmbedding(conf)
matrix = model.batch_embed(['hello world', 'goodbye world'])
assert matrix.ndim == 2
assert np.isclose(np.linalg.norm(matrix, axis=1), 1.0).all()
def test_get_embedding_model(conf):
model = embeddings.get_embedding_model(conf)
assert model is not None
vector = model.embed('hello world')
assert vector.ndim == 1
assert np.isclose(np.linalg.norm(vector), 1.0)
def test_embedding_main():
embeddings.main(['hello world'])
|