1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
Format: https://blends.debian.org/blends/1.1
Task: ASCL
Install: false
Index: false
Leaf: false
Metapackage: false
Description: Packages in the Astrophysics Source Code Library
Here we list all Debian packages that are mentioned in the [Astrophysics
Source Code Library](https://ascl.net) (ASCL).
.
The Astrophysics Source Code Library is a free online registry for
source codes of interest to astronomers and astrophysicists and lists codes
that have been used in research that has appeared in, or been submitted to,
peer-reviewed publications. The ASCL is indexed by the [SAO/NASA Astrophysics
Data System](http://ads.harvard.edu/) (ADS) and is citable by using the
unique ascl ID assigned to each code.
Recommends: python3-galpy
Remark: ASCL-Id 1411.008
Recommends: skycat
Remark: ASCL-Id 1109.019
Recommends: wcstools
Remark: ASCL-Id 1109.015
Suggests: python3-pyfits
Remark: ASCL-Id 1207.009
Recommends: libnova-dev
Remark: ASCL-Id 1502.016
Recommends: libfftw3-dev
Remark: ASCL-Id 1201.015
Recommends: mocassin
Remark: ASCL-Id 1110.010
Recommends: ifrit
Remark: ASCL-Id 1304.019
Recommends: python3-ccdproc
Remark: ASCL-Id 1510.007
Recommends: stiff
Remark: ASCL-Id 1110.006
Recommends: gyoto
Remark: ASCL-Id 1203.005
Recommends: libplplot-dev
Remark: ASCL-Id 1106.003
Recommends: qfitsview
Remark: ASCL-Id 1210.019
Recommends: ftools-fv
Remark: ASCL-Id 1205.005
Recommends: mayavi2
Remark: ASCL-Id 1205.008
Recommends: psfex
Remark: ASCL-Id 1301.001
Recommends: montage
Remark: ASCL-Id 1010.036
Recommends: libcfitsio-bin
Remark: ASCL-Id 1010.002
Recommends: libcfitsio-dev
Remark: ASCL-Id 1010.001
Recommends: eso-midas
Remark: ASCL-Id 1302.017
Recommends: libchealpix-dev
Remark: ASCL-Id 1107.018
Recommends: dpuser
Remark: ASCL-Id 1303.025
Recommends: python3-pysynphot
Remark: ASCL-Id 1303.023
Recommends: ginga
Remark: ASCL-Id 1303.020
Recommends: saods9
Remark: ASCL-Id 0003.002
Recommends: python3-astropy
Remark: ASCL-Id 1304.002
Recommends: libstarlink-ast-dev
Remark: ASCL-Id 1404.016
Recommends: wcslib-dev
Remark: ASCL-Id 1108.003
Recommends: python3-emcee
Remark: ASCL-Id 1303.002
Recommends: imagej
Remark: ASCL-Id 1206.013
Recommends: alfa
Remark: ASCL-Id 1512.005
Recommends: python3-astlib
Remark: ASCL-Id 1607.016
Recommends: libcpl-dev
Remark: ASCL-Id 1402.010
Recommends: python3-photutils
Remark: ASCL-Id 1609.011
Recommends: python3-spectral-cube
Remark: ASCL-Id 1609.017
Recommends: python3-sncosmo
Remark: ASCL-Id 1611.017
Recommends: python3-pyvo
Remark: ASCL-Id 1402.004
Recommends: python3-yt
Remark: ASCL-Id 1011.022
Recommends: paraview
Remark: ASCL-Id 1103.014
Recommends: predict
Remark: ASCL-Id 1112.016
Recommends: python3-ephem
Remark: ASCL-Id 1112.014
Recommends: python3-aplpy
Remark: ASCL-Id 1208.017
Recommends: gdl-mpfit
Remark: ASCL-Id 1208.019
Recommends: esorex
Remark: ASCL-Id 1504.003
Recommends: splash
Remark: ASCL-Id 1103.004
Recommends: python3-sunpy
Remark: ASCL-Id 1401.010
Recommends: python3-lmfit
Remark: ASCL-Id 1606.014
Recommends: funtools
Remark: ASCL-Id 1112.002
Recommends: ggobi
Remark: ASCL-Id 1112.008
Recommends: swarp
Remark: ASCL-Id 1010.068
Recommends: weightwatcher
Remark: ASCL-Id 1010.069
Recommends: missfits
Remark: ASCL-Id 1010.062
Recommends: scamp
Remark: ASCL-Id 1010.063
Recommends: source-extractor
Remark: ASCL-Id 1010.064
Recommends: python3-astroml
Remark: ASCL-Id 1407.018
Recommends: astrometry.net
Remark: ASCL-Id 1208.001
Recommends: jags
Remark: ASCL-Id 1209.002
Recommends: libstarlink-pal-dev
Remark: ASCL-Id 1606.002
Recommends: neat
Remark: ASCL-Id 1411.013
Recommends: geant321
Remark: ASCL-Id 1010.079
Recommends: glueviz
Remark: ASCL-Id 1402.002
Recommends: aoflagger
Remark: ASCL-Id 1010.017
Recommends: wsclean
Remark: ASCL-Id 1408.023
Recommends: lorene
Remark: ASCL-Id 1608.018
Suggests: pgplot5
Remark: ASCL-Id 1103.002. Giza-dev is a DFSG-free replacement for pgplot5.
Recommends: fitsh
Remark: ASCL-Id 1111.014
Recommends: libsopt-dev
Remark: ASCL-Id 1307.020
Recommends: purify
Remark: ASCL-Id 1307.019
Recommends: cpl-plugin-muse
Remark: ASCL-Id 1610.004
Recommends: python3-cpl
Remark: ASCL-Id 1612.001
Recommends: munipack
Remark: ASCL-Id 1402.006
Recommends: theli
Remark: ASCL-Id 1308.013
Recommends: python3-sherpa
WNPP: 795370
Pkg-Description: Modeling and fitting in Python 3
Sherpa is a Python package for modeling and fitting. It enables the user to
construct complex models from simple definitions and fit those models to
data, using a variety of statistics and optimization methods.
.
It was originally developed by the Smithsonian Astrophysical Observatory /
Chandra X-Ray Center as part of the larger CIAO package for X-ray data
analysis
Homepage: http://cxc.cfa.harvard.edu/sherpa/
Remark: ASCL-Id 1107.005
Recommends: cloudy
WNPP: 725891
Remark: ASCL-Id 9910.001
Recommends: aladin
Remark: ASCL-Id 1112.019
Recommends: splat-vo
WNPP: 827354
Homepage: http://www.g-vo.org/pmwiki/About/SPLAT
Pkg-Description: Spectral Analysis Tool (SPLAT) for Virtual Observatory
Splat-VO is an desktop client for viewing and analysis of Virtual
Observatory (VO) spectral data. This graphical tool can display,
analyse, compare and modify already extracted spectra stored in FITS,
TEXT, and NDF/NDX formats. It can also interact with the Virtual
Observatory registery and data-centres to dynamically query and
download data for a particular section of the sky on-demand.
.
Splat-VO can work in multiple coordinate systems and can plot and
overlay multiple spectra at the same time. Plots are displayed in a
visually rich format. Analysis can be performed by selecting and
zooming multiple, and fitting to emission and absorption lines.
Remark: ASCL-Id 1402.007
Recommends: stilts
Remark: ASCL-Id 1105.001
Recommends: topcat
Remark: ASCL-Id 1101.010
Recommends: mpgrafic
Remark: ASCL-Id 1304.014
Recommends: skyview
Remark: ASCL-Id 1511.003
Recommends: python3-mvpa2
Remark: ASCL-Id 1703.009
Recommends: python3-pymoc
Remark: ASCL-Id 1707.005
Recommends: python3-astroquery
Remark: ASCL-Id 1708.004
Recommends: cpl-plugin-sinfo
Remark: ASCL-Id 1708.019
Recommends: python3-pyspeckit
Remark: ASCL-Id 1109.001
WNPP: 881699
Homepage: https://pypi.python.org/pypi/pyspeckit
Pkg-Description: Toolkit for fitting and manipulating spectroscopic data
This is a code framework designed to allow for analysis of
spectroscopic data from a wide variety of astronomical instruments.
It is motivated by the lack of general spectroscopic analysis tools
applicable at multiple wavelengths (compare to IRAF, SPLAT, etc. -
these are wavelength-specific and/or do not make user scripting
easy). Initial implementation focuses on optical and radio
applications, e.g. gaussian and voigt profile fitting,
baseline/continuum fitting, and equivalent width measurements.
Recommends: python3-pyraf
Remark: ASCL-Id 1207.011
Recommends: iraf
Remark: ASCL-Id 9911.002
Recommends: python3-gammapy
Remark: ASCL-Id 1711.014
Recommends: iraf-rvsao
Remark: ASCL-Id 9912.003
Recommends: gnuastro
Remark: ASCL-Id 1801.009
Recommends: python3-astroplan
Remark: ASCL-Id 1802.009
Recommends: gavo2dachs-server
Remark: ASCL-Id 1804.005
Recommends: disperse
WNPP: 898834
Remark: ASCL-Id 1302.015
Homepage: http://www2.iap.fr/users/sousbie/web/html/indexd41d.html
Pkg-Description: Automatic feature identification in 2D and 3D
DisPerSE stands for "Discrete Persistent Structures Extractor" and
its main purpose is the automatic identification of persistent
topological features such as peaks, voids, walls and in particular
filamentary structures within sampled distributions in 2D, 3D, and
possibly more...
Recommends: python3-astroscrappy
Remark: ASCL-Id: 1907.032
Recommends: python3-astrodendro
Remark: ASCL-Id: 1907.016
Recommends: python3-gatspy
Remark: ASCL-Id: 1610.007
WNPP: 941157
Homepage: http://www.astroml.org/gatspy/
Pkg-Description: General tools for Astronomical Time Series in Python
Recommends: python3-keras
Remark: ASCL-Id: 1806.022
Recommends: cassis
Remark: ASCL-Id: 1402.013
WNPP: 942564
Recommends: python3-bdsf
Remark: ASCL-Id: 1502.007
Recommends: python3-cvxopt
Remark: ASCL-Id: 2008.017
Recommends: python3-healpy
Remark: ASCL-Id: 2008.022
Recommends: python3-reproject
Remark: ASCL-Id: 2011.023
Recommends: python3-einsteinpy
Remark: ASCL-Id: 2012.026
Recommends: python3-astroalign
Remark: ASCL-Id: 1906.001
Recommends: python3-sep
Remark: ASCL-Id: 1811.004
Recommends: liblapack-dev
Remark: ASCL-Id: 2104.020
Recommends: freeture
Remark: ASCL-Id: 2104.011
Recommends: python3-pyfftw
Remark: ASCL-Id: 2109.009
Recommends: python3-synphot
Remark: ASCL-Id: 1811.001
Recommends: python3-extinction
Remark: ASCL-Id: 2102.026
Recommends: python3-jplephem
Remark: ASCL-Id: 1908.017
WNPP: 1017350
Recommends: python3-skyfield
Remark: ASCL-Id: 1907.024
WNPP: 911646
|