1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
require 'torch'
require 'nn'
if opt.type == 'cuda' then
require 'cunn'
end
----------------------------------------------------------------------
print(sys.COLORS.red .. '==> construct CNN')
-- Raw training set
-- This gets around 70.6 % on test starting around epoc 115
-- 73.6 % on training
--
-- With horizontal flipping
-- This gets around 74.5 % on test starting around epoc 156
-- 72.1 % on training
--
-- th run.lua -r 1.48242 --sgdLearningRateDecay 0.00195 --sgdMomentum 0.09982 --sgdWeightDecay 2.46e-05 -s full
local CNN = nn.Sequential()
CNN:add(nn.SpatialConvolution(3, 10, 3, 3, 1, 1, 1, 1))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.SpatialMaxPooling(2,2,2,2))
CNN:add(nn.SpatialBatchNormalization(10))
CNN:add(nn.SpatialConvolution(10, 20, 3, 3, 1, 1, 1, 1))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.SpatialMaxPooling(2,2,2,2))
CNN:add(nn.SpatialBatchNormalization(20))
CNN:add(nn.SpatialConvolution(20, 40, 3, 3, 1, 1, 1, 1))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialDropout(0.25))
CNN:add(nn.SpatialBatchNormalization(40))
CNN:add(nn.View(40*8*8))
local classifier = nn.Sequential()
classifier:add(nn.Linear(40*8*8, 500))
classifier:add(nn.BatchNormalization(500))
classifier:add(nn.ReLU())
classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(500, 10))
classifier:add(nn.LogSoftMax())
local model = nn.Sequential()
model:add(CNN)
model:add(classifier)
-- Loss: NLL
local loss = nn.ClassNLLCriterion()
----------------------------------------------------------------------
print(sys.COLORS.red .. '==> here is the CNN:')
print(model)
if opt.type == 'cuda' then
model:cuda()
loss:cuda()
end
-- return package:
return {
model = model,
loss = loss,
}
|