1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
require 'torch'
require 'nn'
if opt.type == 'cuda' then
require 'cunn'
end
----------------------------------------------------------------------
print(sys.COLORS.red .. '==> construct CNN')
-- This gets around ????% on test starting around epoc ??
-- ????% on training
--
-- th run.lua
local CNN = nn.Sequential()
CNN:add(nn.SpatialConvolution(3, 64, 3, 3, 1, 1, 1, 1))
CNN:add(nn.SpatialBatchNormalization(64))
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1))
CNN:add(nn.SpatialBatchNormalization(64))
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1))
CNN:add(nn.SpatialBatchNormalization(64))
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialMaxPooling(2,2,2,2))
CNN:add(nn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1))
CNN:add(nn.SpatialBatchNormalization(64))
CNN:add(nn.SpatialDropout(0.2))
CNN:add(nn.ReLU())
CNN:add(nn.SpatialMaxPooling(2,2,2,2))
CNN:add(nn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1))
CNN:add(nn.SpatialBatchNormalization(64))
CNN:add(nn.SpatialDropout(0.25))
CNN:add(nn.ReLU())
CNN:add(nn.View(64*8*8))
local classifier = nn.Sequential()
classifier:add(nn.Linear(64*8*8, 500))
classifier:add(nn.BatchNormalization(500))
classifier:add(nn.ReLU())
classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(500, 10))
classifier:add(nn.LogSoftMax())
local model = nn.Sequential()
model:add(CNN)
model:add(classifier)
-- Loss: NLL
local loss = nn.ClassNLLCriterion()
----------------------------------------------------------------------
print(sys.COLORS.red .. '==> here is the CNN:')
print(model)
if opt.type == 'cuda' then
model:cuda()
loss:cuda()
end
-- return package:
return {
model = model,
loss = loss,
}
|