File: dump_sequential_output.lua

package info (click to toggle)
deepboof 0.5.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,856 kB
  • sloc: java: 14,433; python: 50; makefile: 12; sh: 3
file content (51 lines) | stat: -rw-r--r-- 1,764 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
-----------------------------------------------------------------------------------------------
-- Dumps the output for each layer in the network.  Only works with sequential networks
--
-- Usage: th dump_sequential_output.lua
--
-- Peter Abeles
-----------------------------------------------------------------------------------------------

require 'lfs'

require 'torch'
require 'nn'

local spatialInput = torch.randn(2,3,32,32):float()

local function processSequence( file, sequence , startIndex, inputTensor )
--    print("=============== ENTER processSequence() "..sequence.__typename)
    local output = inputTensor
    local num = startIndex
    for i=1,sequence:size() do
        local m = sequence.modules[i]

        print( "name = "..m.__typename )
        if m.__typename  == "nn.Sequential" then
            output,num = processSequence(file,m,num,output)
        else
            output = m:forward(output)
--            print("    ... saving "..num)
            torch.save(paths.concat(file,string.format('layer%03d.t7',num)), output)
        end
        num = num + 1
    end
    return output,num
end

for file in lfs.dir("./") do
    if lfs.attributes(file,"mode") == "directory" then
        local modelPath = paths.concat(file,"model.net")
        if lfs.attributes(modelPath,"mode") == "file" then
            print("Found network "..file)
            torch.save(paths.concat(file,'layers_input.t7'), spatialInput)
            local network = torch.load(paths.concat(file,"model_float.net")):float()
            network:evaluate()

            local output,num  = processSequence(file,network,1,spatialInput)
--            print(output)
--            output = network:forward(spatialInput)
--            print(output)
        end
    end
end