File: custom.rst

package info (click to toggle)
deepdiff 8.1.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,716 kB
  • sloc: python: 14,702; makefile: 164; sh: 9
file content (338 lines) | stat: -rw-r--r-- 12,063 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
:doc:`/index`

Customized Diff
===============

.. _iterable_compare_func_label:

Iterable Compare Func
---------------------

New in DeepDiff 5.5.0

There are times that we want to guide DeepDiff as to what items to compare with other items. In such cases we can pass a `iterable_compare_func` that takes a function pointer to compare two items. The function takes three parameters (x, y, level) and should return `True` if it is a match, `False` if it is not a match or raise `CannotCompare` if it is unable to compare the two.


For example take the following objects:


Now let's define a compare_func that takes 3 parameters: x, y and level.

    >>> from deepdiff import DeepDiff
    >>> from deepdiff.helper import CannotCompare
    >>>
    >>> t1 = [
    ...     {
    ...         'id': 1,
    ...         'value': [1]
    ...     },
    ...     {
    ...         'id': 2,
    ...         'value': [7, 8, 1]
    ...     },
    ...     {
    ...         'id': 3,
    ...         'value': [7, 8],
    ...     },
    ... ]
    >>>
    >>> t2 = [
    ...     {
    ...         'id': 2,
    ...         'value': [7, 8]
    ...     },
    ...     {
    ...         'id': 3,
    ...         'value': [7, 8, 1],
    ...     },
    ...     {
    ...         'id': 1,
    ...         'value': [1]
    ...     },
    ... ]
    >>>
    >>> DeepDiff(t1, t2)
    {'values_changed': {"root[0]['id']": {'new_value': 2, 'old_value': 1}, "root[0]['value'][0]": {'new_value': 7, 'old_value': 1}, "root[1]['id']": {'new_value': 3, 'old_value': 2}, "root[2]['id']": {'new_value': 1, 'old_value': 3}, "root[2]['value'][0]": {'new_value': 1, 'old_value': 7}}, 'iterable_item_added': {"root[0]['value'][1]": 8}, 'iterable_item_removed': {"root[2]['value'][1]": 8}}

As you can see the results are different. Now items with the same ids are compared with each other.

    >>> def compare_func(x, y, level=None):
    ...     try:
    ...         return x['id'] == y['id']
    ...     except Exception:
    ...         raise CannotCompare() from None
    ...
    >>> DeepDiff(t1, t2, iterable_compare_func=compare_func)
    {'iterable_item_added': {"root[2]['value'][2]": 1}, 'iterable_item_removed': {"root[1]['value'][2]": 1}}

If we set the verbose_level=2, we can see more details.

    >>> DeepDiff(t1, t2, iterable_compare_func=compare_func, verbose_level=2)
    {'iterable_item_added': {"root[2]['value'][2]": 1}, 'iterable_item_removed': {"root[1]['value'][2]": 1}, 'iterable_item_moved': {'root[0]': {'new_path': 'root[2]', 'value': {'id': 1, 'value': [1]}}, 'root[1]': {'new_path': 'root[0]', 'value': {'id': 2, 'value': [7, 8]}}, 'root[2]': {'new_path': 'root[1]', 'value': {'id': 3, 'value': [7, 8, 1]}}}}


We can also use the level parameter. Levels are explained in the :ref:`tree_view_label`.

For example you could use the level object to further determine if the 2 objects should be matches or not.


    >>> t1 = {
    ...     'path1': [],
    ...     'path2': [
    ...         {
    ...             'id': 1,
    ...             'value': [1]
    ...         },
    ...         {
    ...             'id': 2,
    ...             'value': [7, 8, 1]
    ...         },
    ...     ]
    ... }
    >>>
    >>> t2 = {
    ...     'path1': [{'pizza'}],
    ...     'path2': [
    ...         {
    ...             'id': 2,
    ...             'value': [7, 8, 1]
    ...         },
    ...         {
    ...             'id': 1,
    ...             'value': [1, 2]
    ...         },
    ...     ]
    ... }
    >>>
    >>>
    >>> def compare_func2(x, y, level):
    ...     if (not isinstance(x, dict) or not isinstance(y, dict)):
    ...         raise CannotCompare
    ...     if(level.path() == "root['path2']"):
    ...         if (x["id"] == y["id"]):
    ...             return True
    ...         return False
    ...
    >>>
    >>> DeepDiff(t1, t2, iterable_compare_func=compare_func2)
    {'iterable_item_added': {"root['path1'][0]": {'pizza'}, "root['path2'][0]['value'][1]": 2}}


.. note::

    The level parameter of the iterable_compare_func is only used when ignore_order=False which is the default value for ignore_order.


.. _custom_operators_label:

Custom Operators
----------------

Whether two objects are different or not largely depends on the context. For example, apples and bananas are the same
if you are considering whether they are fruits or not.

In that case, you can pass a *custom_operators* for the job.

Custom operators give you a lot of power. In the following examples, we explore various use cases such as:

- Making DeepDiff report the L2 Distance of items
- Only include specific paths in diffing
- Making DeepDiff stop diffing once we find the first diff.

You can use one of the predefined custom operators that come with DeepDiff. Or you can define one yourself.


Built-In Custom Operators

.. _prefix_or_suffix_operator_label:

PrefixOrSuffixOperator
......................


This operator will skip strings that are suffix or prefix of each other.

For example when this operator is used, the two strings of "joe" and "joe's car" will not be reported as different.

    >>> from deepdiff import DeepDiff
    >>> from deepdiff.operator import PrefixOrSuffixOperator
    >>> t1 = {
    ...     "key1": ["foo", "bar's food", "jack", "joe"]
    ... }
    >>> t2 = {
    ...     "key1": ["foo", "bar", "jill", "joe'car"]
    ... }
    >>>
    >>> DeepDiff(t1, t2)
    {'values_changed': {"root['key1'][1]": {'new_value': 'bar', 'old_value': "bar's food"}, "root['key1'][2]": {'new_value': 'jill', 'old_value': 'jack'}, "root['key1'][3]": {'new_value': "joe'car", 'old_value': 'joe'}}}
    >>> DeepDiff(t1, t2, custom_operators=[
    ...     PrefixOrSuffixOperator()
    ... ])
    >>>
    {'values_changed': {"root['key1'][2]": {'new_value': 'jill', 'old_value': 'jack'}}}




Define A Custom Operator
------------------------


To define an custom operator, you just need to inherit a *BaseOperator* and

    * implement a give_up_diffing method
        * give_up_diffing(level: DiffLevel, diff_instance: DeepDiff) -> boolean

          If it returns True, then we will give up diffing the two objects.
          You may or may not use the diff_instance.custom_report_result within this function
          to report any diff. If you decide not to report anything, and this
          function returns True, then the objects are basically skipped in the results.

    * pass regex_paths and types that will be used to decide if the objects are matched to the init method.
      once the objects are matched, then the give_up_diffing will be run to compare them.

In fact you don't even have to subclass the base operator.

This is all that is expected from the operator, a match function that takes the level and a give_up_diffing function that takes the level and diff_instance.


.. code-block:: python

    def _use_custom_operator(self, level):
        """
        For each level we check all custom operators.
        If any one of them was a match for the level, we run the diff of the operator.
        If the operator returned True, the operator must have decided these objects should not
        be compared anymore. It might have already reported their results.
        In that case the report will appear in the final results of this diff.
        Otherwise basically the 2 objects in the level are being omitted from the results.
        """

        for operator in self.custom_operators:
            if operator.match(level):
                prevent_default = operator.give_up_diffing(level=level, diff_instance=self)
                if prevent_default:
                    return True

        return False


**Example 1: An operator that mapping L2:distance as diff criteria and reports the distance**

    >>> import math
    >>>
    >>> from typing import List
    >>> from deepdiff import DeepDiff
    >>> from deepdiff.operator import BaseOperator
    >>>
    >>>
    >>> class L2DistanceDifferWithPreventDefault(BaseOperator):
    ...     def __init__(self, regex_paths: List[str], distance_threshold: float):
    ...         super().__init__(regex_paths)
    ...         self.distance_threshold = distance_threshold
    ...     def _l2_distance(self, c1, c2):
    ...         return math.sqrt(
    ...             (c1["x"] - c2["x"]) ** 2 + (c1["y"] - c2["y"]) ** 2
    ...         )
    ...     def give_up_diffing(self, level, diff_instance):
    ...         l2_distance = self._l2_distance(level.t1, level.t2)
    ...         if l2_distance > self.distance_threshold:
    ...             diff_instance.custom_report_result('distance_too_far', level, {
    ...                 "l2_distance": l2_distance
    ...             })
    ...         return True
    ...
    >>>
    >>> t1 = {
    ...     "coordinates": [
    ...         {"x": 5, "y": 5},
    ...         {"x": 8, "y": 8}
    ...     ]
    ... }
    >>>
    >>> t2 = {
    ...     "coordinates": [
    ...         {"x": 6, "y": 6},
    ...         {"x": 88, "y": 88}
    ...     ]
    ... }
    >>> DeepDiff(t1, t2, custom_operators=[L2DistanceDifferWithPreventDefault(
    ...     ["^root\\['coordinates'\\]\\[\\d+\\]$"],
    ...     1
    ... )])
    {'distance_too_far': {"root['coordinates'][0]": {'l2_distance': 1.4142135623730951}, "root['coordinates'][1]": {'l2_distance': 113.13708498984761}}}


**Example 2: If the objects are subclasses of a certain type, only compare them if their list attributes are not equal sets**

    >>> class CustomClass:
    ...     def __init__(self, d: dict, l: list):
    ...         self.dict = d
    ...         self.dict['list'] = l
    ...
    >>>
    >>> custom1 = CustomClass(d=dict(a=1, b=2), l=[1, 2, 3])
    >>> custom2 = CustomClass(d=dict(c=3, d=4), l=[1, 2, 3, 2])
    >>> custom3 = CustomClass(d=dict(a=1, b=2), l=[1, 2, 3, 4])
    >>>
    >>>
    >>> class ListMatchOperator(BaseOperator):
    ...     def give_up_diffing(self, level, diff_instance):
    ...         if set(level.t1.dict['list']) == set(level.t2.dict['list']):
    ...             return True
    ...
    >>>
    >>> DeepDiff(custom1, custom2, custom_operators=[
    ...     ListMatchOperator(types=[CustomClass])
    ... ])
    {}
    >>>
    >>>
    >>> DeepDiff(custom2, custom3, custom_operators=[
    ...     ListMatchOperator(types=[CustomClass])
    ... ])
    {'dictionary_item_added': [root.dict['a'], root.dict['b']], 'dictionary_item_removed': [root.dict['c'], root.dict['d']], 'values_changed': {"root.dict['list'][3]": {'new_value': 4, 'old_value': 2}}}
    >>>

**Example 3: Only diff certain paths**

    >>> from deepdiff import DeepDiff
    >>> class MyOperator:
    ...     def __init__(self, include_paths):
    ...         self.include_paths = include_paths
    ...     def match(self, level) -> bool:
    ...         return True
    ...     def give_up_diffing(self, level, diff_instance) -> bool:
    ...         return level.path() not in self.include_paths
    ...
    >>>
    >>> t1 = {'a': [10, 11], 'b': [20, 21], 'c': [30, 31]}
    >>> t2 = {'a': [10, 22], 'b': [20, 33], 'c': [30, 44]}
    >>>
    >>> DeepDiff(t1, t2, custom_operators=[
    ...     MyOperator(include_paths="root['a'][1]")
    ... ])
    {'values_changed': {"root['a'][1]": {'new_value': 22, 'old_value': 11}}}

**Example 4: Give up further diffing once the first diff is found**

Sometimes all you care about is that there is a difference between 2 objects and not all the details of what exactly is different.
In that case you may want to stop diffing as soon as the first diff is found.

    >>> from deepdiff import DeepDiff
    >>> class MyOperator:
    ...     def match(self, level) -> bool:
    ...         return True
    ...     def give_up_diffing(self, level, diff_instance) -> bool:
    ...         return any(diff_instance.tree.values())
    ...
    >>> t1 = [[1, 2], [3, 4], [5, 6]]
    >>> t2 = [[1, 3], [3, 5], [5, 7]]
    >>>
    >>> DeepDiff(t1, t2, custom_operators=[
    ...     MyOperator()
    ... ])
    {'values_changed': {'root[0][1]': {'new_value': 3, 'old_value': 2}}}


Back to :doc:`/index`