1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
:doc:`/index`
F.A.Q
=====
.. Note::
|:mega:| **Please fill out our** `fast 5-question survey <https://forms.gle/E6qXexcgjoKnSzjB8>`__ so that we can learn how & why you use DeepDiff, and what improvements we should make. Thank you! |:dancers:|
Q: DeepDiff report is not precise when ignore_order=True
--------------------------------------------------------
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> t1 = [
... {
... "key": "some/pathto/customers/foo/",
... "flags": 0,
... "value": ""
... },
... {
... "key": "some/pathto/customers/foo/account_number",
... "flags": 0,
... "value": "somevalue1"
... }
... ]
>>>
>>> t2 = [
... {
... "key": "some/pathto/customers/foo/account_number",
... "flags": 0,
... "value": "somevalue2"
... },
... {
... "key": "some/pathto/customers/foo/",
... "flags": 0,
... "value": "new"
... }
... ]
>>>
>>> pprint(DeepDiff(t1, t2))
{'values_changed': {"root[0]['key']": {'new_value': 'some/pathto/customers/foo/account_number',
'old_value': 'some/pathto/customers/foo/'},
"root[0]['value']": {'new_value': 'somevalue2',
'old_value': ''},
"root[1]['key']": {'new_value': 'some/pathto/customers/foo/',
'old_value': 'some/pathto/customers/foo/account_number'},
"root[1]['value']": {'new_value': 'new',
'old_value': 'somevalue1'}}}
**Answer**
This is explained in :ref:`cutoff_distance_for_pairs_label` and :ref:`cutoff_intersection_for_pairs_label`
Bump up these 2 parameters to 1 and you get what you want:
>>> pprint(DeepDiff(t1, t2, ignore_order=True, cutoff_distance_for_pairs=1, cutoff_intersection_for_pairs=1))
{'values_changed': {"root[0]['value']": {'new_value': 'new', 'old_value': ''},
"root[1]['value']": {'new_value': 'somevalue2',
'old_value': 'somevalue1'}}}
Q: The report of changes in a nested dictionary is too granular
---------------------------------------------------------------
**Answer**
Use :ref:`threshold_to_diff_deeper_label`
>>> from deepdiff import DeepDiff
>>> t1 = {"veggie": "carrots"}
>>> t2 = {"meat": "carrots"}
>>>
>>> DeepDiff(t1, t2, threshold_to_diff_deeper=0)
{'dictionary_item_added': ["root['meat']"], 'dictionary_item_removed': ["root['veggie']"]}
>>> DeepDiff(t1, t2, threshold_to_diff_deeper=0.33)
{'values_changed': {'root': {'new_value': {'meat': 'carrots'}, 'old_value': {'veggie': 'carrots'}}}}
Q: TypeError: Object of type type is not JSON serializable
----------------------------------------------------------
I'm trying to serialize the DeepDiff results into json and I'm getting the TypeError.
>>> diff=DeepDiff(1, "a")
>>> diff
{'type_changes': {'root': {'old_type': <class 'int'>, 'new_type': <class 'str'>, 'old_value': 1, 'new_value': 'a'}}}
>>> json.dumps(diff)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../json/__init__.py", line 231, in dumps
return _default_encoder.encode(obj)
File ".../json/encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)
File ".../json/encoder.py", line 257, in iterencode
return _iterencode(o, 0)
File ".../json/encoder.py", line 179, in default
raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type type is not JSON serializable
**Answer**
In order to serialize DeepDiff results into json, use to_json()
>>> diff.to_json()
'{"type_changes": {"root": {"old_type": "int", "new_type": "str", "old_value": 1, "new_value": "a"}}}'
Q: How do I parse DeepDiff result paths?
----------------------------------------
**Answer**
Use parse_path:
>>> from deepdiff import parse_path
>>> parse_path("root[1][2]['age']")
[1, 2, 'age']
>>> parse_path("root[1][2]['age']", include_actions=True)
[{'element': 1, 'action': 'GET'}, {'element': 2, 'action': 'GET'}, {'element': 'age', 'action': 'GET'}]
>>>
>>> parse_path("root['joe'].age")
['joe', 'age']
>>> parse_path("root['joe'].age", include_actions=True)
[{'element': 'joe', 'action': 'GET'}, {'element': 'age', 'action': 'GETATTR'}]
Or use the tree view so you can use path(output_format='list'):
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3, 4]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2, view='tree')
>>> ddiff
{'iterable_item_removed': [<root[4]['b'][2] t1:3, t2:not present>, <root[4]['b'][3] t1:4, t2:not present>]}
>>> # Note that the iterable_item_removed is a set. In this case it has 2 items in it.
>>> # One way to get one item from the set is to convert it to a list
>>> # And then get the first item of the list:
>>> removed = list(ddiff['iterable_item_removed'])[0]
>>> removed
<root[4]['b'][2] t1:3, t2:not present>
>>>
>>> parent = removed.up
>>> parent
<root[4]['b'] t1:[1, 2, 3, 4], t2:[1, 2]>
>>> parent.path() # gives you the string representation of the path
"root[4]['b']"
>>> parent.path(output_format='list') # gives you the list of keys and attributes that make up the path
[4, 'b']
---------
.. admonition:: A message from `Sep <https://github.com/seperman>`__, the creator of DeepDiff
| 👋 Hi there,
|
| Thank you for using DeepDiff!
| As an engineer, I understand the frustration of wrestling with **unruly data** in pipelines.
| That's why I developed a new tool - `Qluster <https://qluster.ai/solution>`__ to empower non-engineers to control and resolve data issues at scale autonomously and **stop bugging the engineers**! 🛠️
|
| If you are going through this pain now, I would love to give you `early access <https://www.qluster.ai/try-qluster>`__ to Qluster and get your feedback.
Back to :doc:`/index`
|