1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
/*
* buffers.c - buffer management for the Linux file system degragmenter.
* $Id: buffers.c,v 1.6 1998/01/25 13:51:51 linux Exp $
*
* Copyright (C) 1992, 1993, 1997 Stephen Tweedie (sct@dcs.ed.ac.uk)
*
* This file may be redistributed under the terms of the GNU General
* Public License.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "defrag.h"
#define sizeof_buffer (sizeof(*pool) + block_size)
#define buffer(i) ((Buffer *) \
(((char *) pool) + (i) * sizeof_buffer))
/* The buffer pool is a unified buffer space containing both the
pending pool and the rescue pool. The pending pool holds buffers
waiting to be written to disk as part of the sequential write of
optimised zones; the rescue pool holds the contents of zones about
to be overwritten by blocks from the write pool.
The select set is an arbitrary subset of the whole buffer pool.
This feature is used in various places to select a group of buffers
for reading or writing.
The buffer pool and hash table will not necessarily be totally in
synch with the relocation maps d2n_map and n2d_map. It is possible
for a buffer to exist for a block which, according to the
relocation maps, is still on disc. This is because the relocation
maps are NOT modified by the creation or deletion of pool buffers,
but only by the actual reading or writing of those pool buffers.
(The basis of the defragmenter's optimisation is the deferring as
long as possible of reads and writes, and the sorting of bulk
reads/writes to improve performance.)
*/
static char tmps[128];
int pool_size = 512;
Buffer *pool;
Buffer *first_free_buffer;
Buffer **select_set;
int select_set_size;
int free_buffers, count_output_buffers, count_rescue_buffers;
int count_buffer_writes = 0, count_buffer_reads = 0;
int count_write_groups = 0, count_read_groups = 0;
int count_buffer_migrates = 0, count_buffer_forces = 0;
int count_buffer_read_aheads = 0;
/* We will hash buffered blocks on the least significant bits of the
block's dest_zone */
#define HASH_SIZE 1024
static Buffer * (hash[HASH_SIZE]) = {0};
#define hash_list(zone) (hash[(zone) % (HASH_SIZE)])
void io_error(const char *message)
{
if (die_on_io_error)
fatal_error("%s.\n", message);
stat_line (message);
io_errors++;
return;
}
/* First of all, the primitive buffer management functions: allocation
and freeing of buffer blocks. */
/* Set up the buffer tables and clear the hash table. This must be
called after the fs-dependent code has been initialised (typically
in read_tables() ) so that the block size variables have been
correctly initialised. */
void init_buffer_tables()
{
int i;
if (debug)
printf ("DEBUG: init_buffer_tables()\n");
for (i=0; i<HASH_SIZE; i++)
hash[i] = 0;
pool = (Buffer *) malloc (pool_size * sizeof_buffer);
if (!pool)
die ("Unable to allocate buffer pool.");
memset (pool, 0, pool_size * sizeof_buffer);
select_set = (Buffer **) malloc (pool_size *
sizeof(*select_set));
if (!select_set)
die ("Unable to allocate pool select set");
select_set_size = 0;
/* Set up the free buffer list */
for (i=0; i<pool_size-1; i++)
{
buffer(i)->next = buffer(i+1);
}
buffer(pool_size-1)->next = 0;
first_free_buffer = buffer(0);
free_buffers = pool_size;
count_output_buffers = count_rescue_buffers = 0;
}
/* Lookup a block in the hash table. Returns a pointer to the entry
in the hash list (ie. doubly indirected), or zero. */
static Buffer ** hash_lookup (Block zone)
{
Buffer ** b;
b = &(hash_list(zone));
while (*b)
{
if ((*b)->dest_zone == zone)
return b;
b = &((*b)->next);
}
return 0;
}
/* Allocate an unused buffer from the pool. */
Buffer * allocate_buffer (Block zone, BufferType btype)
{
Buffer * b;
if (!first_free_buffer)
die ("No free buffers");
assert (free_buffers);
assert (!(hash_lookup(zone)));
/* Remove a buffer from the free list */
b = first_free_buffer;
first_free_buffer = first_free_buffer->next;
assert (!b->in_use);
b->in_use = 1;
/* Set up the buffer fields */
b->dest_zone = zone;
b->btype = btype;
b->full = 0;
/* Update buffer counts */
free_buffers--;
switch (btype)
{
case OUTPUT:
count_output_buffers++;
break;
case RESCUE:
count_rescue_buffers++;
break;
}
/* Link the buffer into the hash table */
b->next = hash_list(zone);
hash_list(zone) = b;
assert ((count_rescue_buffers + count_output_buffers +
free_buffers) == pool_size);
return b;
}
/* Free up a buffer from the buffer pool. Manage the free buffer list
and hash table appropriately. */
void free_buffer (Buffer *b)
{
Buffer **p;
if (debug)
printf ("DEBUG: free_buffer (%lu)\n",
(unsigned long) b->dest_zone);
assert (b->in_use);
assert (first_free_buffer ? free_buffers : !free_buffers);
/* Assert : throwing away a buffer's data is illegal unless
the zone is on disk somewhere. */
assert (n2d(b->dest_zone));
b->in_use = 0;
/* Unlink this buffer from the hash table */
p = hash_lookup (b->dest_zone);
assert (p);
assert ((*p) == b);
*p = b->next;
/* Link the buffer into the free list */
b->next = first_free_buffer;
first_free_buffer = b;
/* Update buffer counts */
free_buffers++;
switch (b->btype)
{
case OUTPUT:
count_output_buffers--;
break;
case RESCUE:
count_rescue_buffers--;
break;
}
}
/* Set a buffer's type - used to migrate blocks from the RESCUE to the
OUTPUT pool. */
void set_buffer_type (Buffer *b, BufferType btype)
{
if (debug)
printf ("DEBUG: set_buffer_type (%lu:%d, %d)\n",
(unsigned long) b->dest_zone, b->btype, btype);
if (b->btype == btype)
return;
switch (b->btype)
{
case OUTPUT:
count_output_buffers--;
break;
case RESCUE:
count_rescue_buffers--;
break;
}
b->btype = btype;
switch (btype)
{
case OUTPUT:
count_output_buffers++;
break;
case RESCUE:
count_rescue_buffers++;
break;
}
assert ((count_rescue_buffers + count_output_buffers +
free_buffers) == pool_size);
}
/* Select a group of buffers based on an arbitrary selection predicate */
void select_buffers (int (*fn) (const Buffer *))
{
int i;
if (debug)
printf ("DEBUG: select_buffers()\n");
select_set_size = 0;
for (i=0; i<pool_size; i++)
{
if (buffer(i)->in_use && fn(buffer(i)))
select_set[select_set_size++] = buffer(i);
}
if (debug)
printf ("DEBUG: selected %d buffers\n", select_set_size);
}
/* Compare two buffers based on their dest_zone fields, for use by
the stdlib qsort() function */
static int compare_buffer_zones(const void *a, const void *b)
{
Block azone, bzone;
azone = (*((Buffer **) a))->dest_zone;
bzone = (*((Buffer **) b))->dest_zone;
if (azone < bzone)
return -1;
if (azone == bzone)
return 0;
return 1;
}
/* Compare two buffers again, this time based on their source zone */
static int compare_buffer_zones_for_read (const void *a, const void *b)
{
Block azone, bzone;
azone = n2d((*((Buffer **) a))->dest_zone);
bzone = n2d((*((Buffer **) b))->dest_zone);
if (azone < bzone)
return -1;
if (azone == bzone)
return 0;
return 1;
}
/* Sort the current select_set based on buffer dest_zone. Sorting
buffers in this manner before a read or write will significantly
improve i/o performance, but is not essential for correct running
of the program. */
void sort_select_set (void)
{
if (debug)
printf ("DEBUG: sort_select_set()\n");
qsort (select_set, select_set_size, sizeof (*select_set),
compare_buffer_zones);
}
/* Perform a similar sort, but sort on source zones for an order
suitable for reading the select set. */
void sort_select_set_for_read (void)
{
if (debug)
printf ("DEBUG: sort_select_set_for_read()\n");
qsort (select_set, select_set_size, sizeof (*select_set),
compare_buffer_zones_for_read);
}
/*
* check_zone_nr checks to see that *nr is a valid zone nr. It dies if
* it isn't.
*/
void check_zone_nr (Block nr)
{
if (debug)
printf ("DEBUG: check_zone_nr (&%ld)\n", (long) nr);
if (nr < first_zone)
printf ("Zone nr %ld < first_zone.\n", (long) nr);
else if (nr >= zones)
printf ("Zone nr %ld > zones.\n", (long) nr);
else
return;
die ("Invalid zone number");
}
/*
* read_current_block reads block nnr into the buffer at addr.
*/
void read_current_block (Block nnr, char * addr)
{
loff_t offset;
if (debug)
printf ("DEBUG: read_block (&%ld, %d)\n",
(long) nnr, (int) addr);
if (!nnr)
return;
check_zone_nr(nnr);
offset = (loff_t) block_size * nnr;
if (offset != nlseek (IN, offset, SEEK_SET))
{
io_error ("seek failed in read_block");
return;
}
if (block_size != nread (IN, addr, block_size))
{
sprintf (tmps,
"Read error: bad block %ld in read_block",
(long) nnr);
io_error (tmps);
/* Error in read - just set it to all zeros. There's
nothing better we can do. */
memset (addr, 0, block_size);
}
}
/*
* write_current_block writes block nr to disk.
*/
void write_current_block (Block nnr, char * addr)
{
loff_t offset;
if (debug)
printf ("DEBUG: write_block(%ld, %d)\n",
(long) nnr, (int) addr);
check_zone_nr(nnr);
offset = (loff_t) block_size * nnr;
if (offset != nlseek (IN, offset, SEEK_SET))
{
io_error ("seek failed in write_block");
return;
}
if (readonly)
return;
if (block_size != nwrite (IN, addr, block_size))
{
/* No point telling the user where the error occurred -
the kernel's write-behind defeats that. */
io_error ("Write error: bad block in write_block.");
return;
}
if (blocks_until_sync++ >= SYNC_PERIOD)
{
sync();
blocks_until_sync = 0;
}
}
/* read/write_old_block function as read_block and write_block, but using
the zone map to follow blocks which may have been swapped to make room for
optimised zones. */
void read_old_block (Block onr, char *addr)
{
check_zone_nr(onr);
read_current_block (d2n(onr), addr);
}
void write_old_block (Block onr, char *addr)
{
check_zone_nr(onr);
write_current_block (d2n(onr), addr);
}
/* Read/write _Buffer_s. The read/write_old/new_block routines work
on arbitrary blocks and arbitrary memory locations; the Buffer
read/write routines, on the other hand, interact fully with the
zone relocation maps and Buffer data structures from the buffer
pool. */
void read_buffer_data (Buffer *b)
{
Block source;
if (debug)
printf ("DEBUG: read_buffer_data (%lu)\n",
(long) b->dest_zone);
assert (b->in_use);
if (b->full)
return;
source = n2d(b->dest_zone);
/* Don't bother reading here if we are in readonly mode; there
will be no need to write it back at any time. */
if (!readonly)
read_current_block (source, b->data);
d2n(source) = 0;
n2d(b->dest_zone) = 0;
b->full = 1;
count_buffer_reads++;
return;
}
void write_buffer_data_at (Buffer *b, Block dest)
{
if (debug)
printf ("DEBUG: write_buffer_data_at (%lu, %lu)\n",
(unsigned long) b->dest_zone,
(unsigned long) dest);
assert (b->in_use & b->full);
write_current_block (dest, b->data);
assert (!n2d(b->dest_zone));
assert (!d2n(dest));
d2n(dest) = b->dest_zone;
n2d(b->dest_zone) = dest;
count_buffer_writes++;
}
void write_buffer_data (Buffer *b)
{
write_buffer_data_at (b, b->dest_zone);
}
/***********************************************************************
The disk relocation routines: the working core of the defragmenter.
These routines are responsible for implementing the disk block
relocation defined by the forward and reverse relocation maps
d2n_map and n2d_map.
***********************************************************************/
void read_select_set ()
{
int i;
sort_select_set_for_read();
if (!select_set_size)
return;
if (verbose>1)
stat_line ("Reading %d blocks...", select_set_size);
if (voyer_mode) {
for (i=0; i < select_set_size; i++)
set_attr(select_set[i]->dest_zone,AT_READ);
update_display();
}
for (i=0; i < select_set_size; i++)
{
assert (!select_set[i]->full);
read_buffer_data (select_set[i]);
}
clear_attr(AT_READ);
count_read_groups++;
}
void write_select_set ()
{
int i;
sort_select_set();
if (!select_set_size)
return;
if (verbose>1)
stat_line ("Writing %d blocks...", select_set_size);
if (voyer_mode) {
for (i=0; i < select_set_size; i++) /* screen */
set_attr(select_set[i]->dest_zone,AT_WRITE);
update_display();
}
for (i=0; i < select_set_size; i++)
{
assert (select_set[i]->in_use &&
select_set[i]->full);
write_buffer_data(select_set[i]);
}
if (voyer_mode)
clear_attr(AT_WRITE);
count_write_groups++;
}
void free_select_set()
{
int i;
for (i=0; i < select_set_size; i++)
free_buffer (select_set[i]);
select_set_size = 0;
}
/* A few useful buffer selection predicates... */
int output_buffer_p (const Buffer *b)
{
return (b->btype == OUTPUT);
}
int empty_buffer_p (const Buffer *b)
{
return (!b->full);
}
int rescue_buffer_p (const Buffer *b)
{
return (b->btype == RESCUE);
}
int true (const Buffer *b)
{
return 1;
}
/* Routines for reading and flushing data */
void read_all_buffers()
{
/* Select and sort all (non-empty) buffers for reading */
select_buffers (empty_buffer_p);
read_select_set();
}
void flush_output_pool()
{
read_all_buffers ();
select_buffers (output_buffer_p);
if (!select_set_size)
return;
if (verbose>1)
stat_line ("Saving: ");
write_select_set();
free_select_set();
}
/* Here we employ various methods for getting rid of some of the
buffers in the buffer pool. There are three methods used, in
order of preference:
flush output buffers: Buffers waiting to be sequentially written to
disk are written now.
If that fails to free more than 25% of buffers:
flush rescue buffers: Rescue buffers whose destination zones are
empty (ie. already moved into the output pool and
hence to disk) are flushed, by migrating them
immediately to the output pool.
If that fails to free more than 20% of the buffers, drastic action
is necessary:
force rescue buffers: Rescue buffers are sorted, and a number of
rescue buffers destined for later disk zones are
written to free space at the end of the disk (NOT to
their ultimate destinations, though). We choose later
rescue buffers to flush in preference to earlier
buffers, in anticipation of soon being able to migrate
early rescued blocks to the output pool. */
void get_some_buffer_space()
{
int i, count = 0;
Block dest;
flush_output_pool();
if ((free_buffers * 4) > pool_size)
return;
/* OK, try migrating rescue buffers to the output pool */
for (i=0; i<pool_size; i++)
{
if (buffer(i)->in_use &&
buffer(i)->btype == RESCUE &&
d2n(buffer(i)->dest_zone) == 0)
{
set_buffer_type(buffer(i), OUTPUT);
count++;
count_buffer_migrates++;
}
}
if (verbose>1)
stat_line ("Migrated %d rescued blocks%s", count,
count ? ": " : ".");
flush_output_pool();
if ((free_buffers * 5) > pool_size)
return;
/* Serious trouble - more than 80% of the pool is occupied by
unsaveable rescue buffers. We'll have to force some of
them to disk. (The algorithm I'm using tries hard to avoid
this, since it is the only occasion where a disk block may
have to be be moved more than once during relocation.) */
select_buffers (true);
sort_select_set ();
assert (select_set_size + free_buffers == pool_size);
/* Select the top 25% of rescue buffers for forcing (this is
an entirely arbitrary number; in fact, most of the numbers
in this function could probably be tweaked to tune
performance, but these seem to work OK. */
dest = zones-1; count = 0;
if (verbose>1)
stat_line ("Pool too full - forcing buffers...");
for (i = select_set_size-1; i >= ((select_set_size*3)/4); i--)
{
while (d2n(dest))
dest--;
write_buffer_data_at (select_set[i], dest);
free_buffer (select_set[i]);
count_buffer_forces++;
count++;
}
if (verbose>1)
stat_line (" %d buffers recovered.", count);
select_set_size = 0;
}
void remap_disk_blocks (void)
{
Block source, dest = first_zone, dest2;
Buffer **p;
if (debug)
printf ("DEBUG: remap_disk_blocks()\n");
if (verbose)
stat_line ("Relocating disk blocks - this could take a while.");
/* Walk through each disk block sequentially, rescuing
previous contents and reading the new contents into the
output buffer. */
do
{
if (verbose && !(dest & 1023))
{
stat_line ("Relocating : %d MB...",
(dest / 1024));
}
/* Don't try to save stuff to disk until we are */
/* running out of free buffers. */
if (free_buffers < 4)
{
get_some_buffer_space ();
}
assert (free_buffers >= 4);
/* Use the reverse relocation map to obtain the block
which should go in this space */
source = n2d(dest);
/* Zero means this block cannot be found on disk.
Either it should remain empty (it may be a bad
block), or it has already been read into the rescue
pool. If source==dest, the block is already in
place. */
if (source == dest)
continue;
/* We may have already read the source block into the
rescue pool; look for the block (indexed by dest)
in the hash table */
p = hash_lookup (dest);
if (p)
{
/* Yes, we already have the block so make it
an OUTPUT buffer (it must currently be a
RESCUE buffer). */
assert ((*p)->btype == RESCUE);
set_buffer_type (*p, OUTPUT);
count_buffer_read_aheads++;
}
else
{
/* No, the block is not in the hash table:
if the block can be found on disk, read it;
otherwise, the block will remain empty and
can be skipped. */
if (!source)
continue;
allocate_buffer (dest, OUTPUT);
}
/* Rescue the block about to be overwritten. All
buffers are referred to by their destination zone
(according to the relocation map), NOT the zone
that block is currently residing in. So, work out
the final destination of the block currently
residing in the destination zone by looking up the
forward relocation map. */
dest2 = d2n(dest);
/* Zero means that the dest block may be safely
overwritten. */
if (!dest2)
continue;
/* Check to see if we have already read this block */
p = hash_lookup (dest2);
if (p)
{
/* We have, so no need to read it again */
continue;
}
/* Read the block into the rescue pool */
allocate_buffer (dest2, RESCUE);
} while (++dest < zones);
/* We have got to the end, so flush any remaining buffers. */
flush_output_pool ();
assert (!count_output_buffers);
assert (!count_rescue_buffers);
assert (free_buffers == pool_size);
}
|