File: amd64_arch.go

package info (click to toggle)
delve 1.24.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,092 kB
  • sloc: ansic: 111,943; sh: 169; asm: 141; makefile: 43; python: 23
file content (471 lines) | stat: -rw-r--r-- 15,191 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
package proc

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"io"
	"math"
	"strings"

	"github.com/go-delve/delve/pkg/dwarf/frame"
	"github.com/go-delve/delve/pkg/dwarf/op"
	"github.com/go-delve/delve/pkg/dwarf/regnum"
)

var amd64BreakInstruction = []byte{0xCC}

// AMD64Arch returns an initialized AMD64
// struct.
func AMD64Arch(goos string) *Arch {
	return &Arch{
		Name:                             "amd64",
		ptrSize:                          8,
		maxInstructionLength:             15,
		breakpointInstruction:            amd64BreakInstruction,
		breakInstrMovesPC:                true,
		derefTLS:                         goos == "windows",
		prologues:                        prologuesAMD64,
		fixFrameUnwindContext:            amd64FixFrameUnwindContext,
		switchStack:                      amd64SwitchStack,
		regSize:                          amd64RegSize,
		RegistersToDwarfRegisters:        amd64RegistersToDwarfRegisters,
		addrAndStackRegsToDwarfRegisters: amd64AddrAndStackRegsToDwarfRegisters,
		DwarfRegisterToString:            amd64DwarfRegisterToString,
		inhibitStepInto:                  func(*BinaryInfo, uint64) bool { return false },
		asmDecode:                        amd64AsmDecode,
		PCRegNum:                         regnum.AMD64_Rip,
		SPRegNum:                         regnum.AMD64_Rsp,
		BPRegNum:                         regnum.AMD64_Rbp,
		ContextRegNum:                    regnum.AMD64_Rdx,
		asmRegisters:                     amd64AsmRegisters,
		RegisterNameToDwarf:              nameToDwarfFunc(regnum.AMD64NameToDwarf),
		RegnumToString:                   regnum.AMD64ToName,
		debugCallMinStackSize:            256,
		maxRegArgBytes:                   9*8 + 15*8,
		argumentRegs:                     []int{regnum.AMD64_Rax, regnum.AMD64_Rbx, regnum.AMD64_Rcx},
	}
}

func amd64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
	a := bi.Arch
	if a.sigreturnfn == nil {
		a.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
	}

	if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
		// When there's no frame descriptor entry use BP (the frame pointer) instead
		// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
		// - cfa is bp + a.PtrSize()*2
		// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
		// - sp is cfa

		// When the signal handler runs it will move the execution to the signal
		// handling stack (installed using the sigaltstack system call).
		// This isn't a proper stack switch: the pointer to g in TLS will still
		// refer to whatever g was executing on that thread before the signal was
		// received.
		// Since go did not execute a stack switch the previous value of sp, pc
		// and bp is not saved inside g.sched, as it normally would.
		// The only way to recover is to either read sp/pc from the signal context
		// parameter (the ucontext_t* parameter) or to unconditionally follow the
		// frame pointer when we get to runtime.sigreturn (which is what we do
		// here).

		return &frame.FrameContext{
			RetAddrReg: regnum.AMD64_Rip,
			Regs: map[uint64]frame.DWRule{
				regnum.AMD64_Rip: {
					Rule:   frame.RuleOffset,
					Offset: int64(-a.PtrSize()),
				},
				regnum.AMD64_Rbp: {
					Rule:   frame.RuleOffset,
					Offset: int64(-2 * a.PtrSize()),
				},
				regnum.AMD64_Rsp: {
					Rule:   frame.RuleValOffset,
					Offset: 0,
				},
			},
			CFA: frame.DWRule{
				Rule:   frame.RuleCFA,
				Reg:    regnum.AMD64_Rbp,
				Offset: int64(2 * a.PtrSize()),
			},
		}
	}

	if a.crosscall2fn == nil {
		a.crosscall2fn = bi.lookupOneFunc("crosscall2")
	}

	if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
		rule := fctxt.CFA
		if rule.Offset == crosscall2SPOffsetBad {
			switch bi.GOOS {
			case "windows":
				rule.Offset += crosscall2SPOffsetWindowsAMD64
			default:
				rule.Offset += crosscall2SPOffset
			}
		}
		fctxt.CFA = rule
	}

	// We assume that RBP is the frame pointer, and we want to keep it updated,
	// so that we can use it to unwind the stack even when we encounter frames
	// without descriptor entries.
	// If there isn't a rule already we emit one.
	if fctxt.Regs[regnum.AMD64_Rbp].Rule == frame.RuleUndefined {
		fctxt.Regs[regnum.AMD64_Rbp] = frame.DWRule{
			Rule:   frame.RuleFramePointer,
			Reg:    regnum.AMD64_Rbp,
			Offset: 0,
		}
	}

	return fctxt
}

// cgocallSPOffsetSaveSlot is the offset from systemstack.SP where
// (goroutine.SP - StackHi) is saved in runtime.asmcgocall after the stack
// switch happens.
const amd64cgocallSPOffsetSaveSlot = 0x28

func amd64SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
	if it.frame.Current.Fn == nil {
		if it.systemstack && it.g != nil && it.top {
			it.switchToGoroutineStack()
			return true
		}
		return false
	}
	switch it.frame.Current.Fn.Name {
	case "runtime.asmcgocall":
		if it.top || !it.systemstack {
			return false
		}

		// This function is called by a goroutine to execute a C function and
		// switches from the goroutine stack to the system stack.
		// Since we are unwinding the stack from callee to caller we have to switch
		// from the system stack to the goroutine stack.
		off, _ := readIntRaw(it.mem, it.regs.SP()+amd64cgocallSPOffsetSaveSlot, int64(it.bi.Arch.PtrSize())) // reads "offset of SP from StackHi" from where runtime.asmcgocall saved it
		oldsp := it.regs.SP()
		it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(it.stackhi) - off)

		// runtime.asmcgocall can also be called from inside the system stack,
		// in that case no stack switch actually happens
		if it.regs.SP() == oldsp {
			return false
		}
		it.systemstack = false

		// advances to the next frame in the call stack
		addrret := uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()))
		it.frame.Ret, _ = readUintRaw(it.mem, addrret, int64(it.bi.Arch.PtrSize()))
		it.pc = it.frame.Ret

		it.top = false
		return true

	case "runtime.cgocallback_gofunc", "runtime.cgocallback":
		// For a detailed description of how this works read the long comment at
		// the start of $GOROOT/src/runtime/cgocall.go and the source code of
		// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_amd64.s
		//
		// When a C functions calls back into go it will eventually call into
		// runtime.cgocallback_gofunc which is the function that does the stack
		// switch from the system stack back into the goroutine stack
		// Since we are going backwards on the stack here we see the transition
		// as goroutine stack -> system stack.
		if it.top || it.systemstack {
			return false
		}

		it.loadG0SchedSP()
		if it.g0_sched_sp <= 0 {
			return false
		}
		// entering the system stack
		it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g0_sched_sp
		// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
		it.g0_sched_sp, _ = readUintRaw(it.mem, it.regs.SP(), int64(it.bi.Arch.PtrSize()))
		it.top = false
		callFrameRegs, ret, retaddr := it.advanceRegs()
		frameOnSystemStack := it.newStackframe(ret, retaddr)
		it.pc = frameOnSystemStack.Ret
		it.regs = callFrameRegs
		it.systemstack = true

		return true

	case "runtime.goexit", "runtime.rt0_go":
		// Look for "top of stack" functions.
		it.atend = true
		return true

	case "runtime.mcall":
		if it.systemstack && it.g != nil {
			it.switchToGoroutineStack()
			return true
		}
		it.atend = true
		return true

	case "runtime.mstart":
		// Calls to runtime.systemstack will switch to the systemstack then:
		// 1. alter the goroutine stack so that it looks like systemstack_switch
		//    was called
		// 2. alter the system stack so that it looks like the bottom-most frame
		//    belongs to runtime.mstart
		// If we find a runtime.mstart frame on the system stack of a goroutine
		// parked on runtime.systemstack_switch we assume runtime.systemstack was
		// called and continue tracing from the parked position.

		if it.top || !it.systemstack || it.g == nil {
			return false
		}
		if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
			return false
		}

		it.switchToGoroutineStack()
		return true

	case "runtime.newstack", "runtime.systemstack":
		if it.systemstack && it.g != nil {
			it.switchToGoroutineStack()
			return true
		}

		return false

	default:
		return false
	}
}

// amd64RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
// figure 3.36
// https://www.uclibc.org/docs/psABI-x86_64.pdf
func amd64RegSize(rn uint64) int {
	// XMM registers
	if rn > regnum.AMD64_Rip && rn <= 32 {
		return 16
	}
	// x87 registers
	if rn >= 33 && rn <= 40 {
		return 10
	}
	return 8
}

func amd64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
	dregs := initDwarfRegistersFromSlice(int(regnum.AMD64MaxRegNum()), regs, regnum.AMD64NameToDwarf)
	dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
	dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.AMD64NameToDwarf))
	return dr
}

func initDwarfRegistersFromSlice(maxRegs int, regs Registers, nameToDwarf map[string]int) []*op.DwarfRegister {
	dregs := make([]*op.DwarfRegister, maxRegs+1)
	regslice, _ := regs.Slice(false)
	for _, reg := range regslice {
		if dwarfReg, ok := nameToDwarf[strings.ToLower(reg.Name)]; ok {
			dregs[dwarfReg] = reg.Reg
		}
	}
	return dregs
}

func loadMoreDwarfRegistersFromSliceFunc(dr *op.DwarfRegisters, regs Registers, nameToDwarf map[string]int) func() {
	return func() {
		regslice, err := regs.Slice(true)
		dr.FloatLoadError = err
		for _, reg := range regslice {
			name := strings.ToLower(reg.Name)
			if dwarfReg, ok := nameToDwarf[name]; ok {
				dr.AddReg(uint64(dwarfReg), reg.Reg)
			} else if reg.Reg.Bytes != nil && (strings.HasPrefix(name, "ymm") || strings.HasPrefix(name, "zmm")) {
				xmmIdx, ok := nameToDwarf["x"+name[1:]]
				if !ok {
					continue
				}
				xmmReg := dr.Reg(uint64(xmmIdx))
				if xmmReg == nil || xmmReg.Bytes == nil {
					continue
				}
				nb := make([]byte, 0, len(xmmReg.Bytes)+len(reg.Reg.Bytes))
				nb = append(nb, xmmReg.Bytes...)
				nb = append(nb, reg.Reg.Bytes...)
				xmmReg.Bytes = nb
			}
		}
	}
}

func amd64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
	dregs := make([]*op.DwarfRegister, regnum.AMD64_Rip+1)
	dregs[regnum.AMD64_Rip] = op.DwarfRegisterFromUint64(pc)
	dregs[regnum.AMD64_Rsp] = op.DwarfRegisterFromUint64(sp)
	dregs[regnum.AMD64_Rbp] = op.DwarfRegisterFromUint64(bp)

	return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
}

func amd64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
	name = regnum.AMD64ToName(uint64(i))

	if reg == nil {
		return name, false, ""
	}

	switch n := strings.ToLower(name); n {
	case "rflags":
		return name, false, eflagsDescription.Describe(reg.Uint64Val, 64)

	case "cw", "sw", "tw", "fop":
		return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)

	case "mxcsr_mask":
		return name, true, fmt.Sprintf("%#08x", reg.Uint64Val)

	case "mxcsr":
		return name, true, mxcsrDescription.Describe(reg.Uint64Val, 32)

	default:
		if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
			return name, true, formatSSEReg(name, reg.Bytes)
		} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
			return name, true, formatX87Reg(reg.Bytes)
		} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
			return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
		} else {
			return name, false, fmt.Sprintf("%#x", reg.Bytes)
		}
	}
}

func formatSSEReg(name string, reg []byte) string {
	out := new(bytes.Buffer)
	formatSSERegInternal(reg, out)
	if len(reg) < 32 {
		return out.String()
	}

	fmt.Fprintf(out, "\n\t[%sh] ", "Y"+name[1:])
	formatSSERegInternal(reg[16:], out)

	if len(reg) < 64 {
		return out.String()
	}

	fmt.Fprintf(out, "\n\t[%shl] ", "Z"+name[1:])
	formatSSERegInternal(reg[32:], out)
	fmt.Fprintf(out, "\n\t[%shh] ", "Z"+name[1:])
	formatSSERegInternal(reg[48:], out)

	return out.String()
}

func formatSSERegInternal(xmm []byte, out *bytes.Buffer) {
	buf := bytes.NewReader(xmm)

	var vi [16]uint8
	for i := range vi {
		binary.Read(buf, binary.LittleEndian, &vi[i])
	}

	fmt.Fprintf(out, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8], vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])

	fmt.Fprintf(out, "\tv2_int={ %02x%02x%02x%02x%02x%02x%02x%02x %02x%02x%02x%02x%02x%02x%02x%02x }", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0], vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])

	fmt.Fprintf(out, "\tv4_int={ %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x }", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4], vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])

	fmt.Fprintf(out, "\tv8_int={ %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x }", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6], vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])

	fmt.Fprintf(out, "\tv16_int={ %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x }", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7], vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])

	buf.Seek(0, io.SeekStart)
	var v2 [2]float64
	for i := range v2 {
		binary.Read(buf, binary.LittleEndian, &v2[i])
	}
	fmt.Fprintf(out, "\tv2_float={ %g %g }", v2[0], v2[1])

	buf.Seek(0, io.SeekStart)
	var v4 [4]float32
	for i := range v4 {
		binary.Read(buf, binary.LittleEndian, &v4[i])
	}
	fmt.Fprintf(out, "\tv4_float={ %g %g %g %g }", v4[0], v4[1], v4[2], v4[3])
}

func formatX87Reg(b []byte) string {
	if len(b) < 10 {
		return fmt.Sprintf("%#x", b)
	}
	mantissa := binary.LittleEndian.Uint64(b[:8])
	exponent := binary.LittleEndian.Uint16(b[8:])

	var f float64
	fset := false

	const (
		_SIGNBIT    = 1 << 15
		_EXP_BIAS   = (1 << 14) - 1 // 2^(n-1) - 1 = 16383
		_SPECIALEXP = (1 << 15) - 1 // all bits set
		_HIGHBIT    = 1 << 63
		_QUIETBIT   = 1 << 62
	)

	sign := 1.0
	if exponent&_SIGNBIT != 0 {
		sign = -1.0
	}
	exponent &= ^uint16(_SIGNBIT)

	NaN := math.NaN()
	Inf := math.Inf(+1)

	switch exponent {
	case 0:
		switch {
		case mantissa == 0:
			f = sign * 0.0
			fset = true
		case mantissa&_HIGHBIT != 0:
			f = NaN
			fset = true
		}
	case _SPECIALEXP:
		switch {
		case mantissa&_HIGHBIT == 0:
			f = sign * Inf
			fset = true
		default:
			f = NaN // signaling NaN
			fset = true
		}
	default:
		if mantissa&_HIGHBIT == 0 {
			f = NaN
			fset = true
		}
	}

	if !fset {
		significand := float64(mantissa) / (1 << 63)
		f = sign * math.Ldexp(significand, int(exponent-_EXP_BIAS))
	}

	var buf bytes.Buffer
	binary.Write(&buf, binary.LittleEndian, exponent)
	binary.Write(&buf, binary.LittleEndian, mantissa)

	return fmt.Sprintf("%#04x%016x\t%g", exponent, mantissa, f)
}