1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
package proc
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/regnum"
)
var amd64BreakInstruction = []byte{0xCC}
// AMD64Arch returns an initialized AMD64
// struct.
func AMD64Arch(goos string) *Arch {
return &Arch{
Name: "amd64",
ptrSize: 8,
maxInstructionLength: 15,
breakpointInstruction: amd64BreakInstruction,
breakInstrMovesPC: true,
derefTLS: goos == "windows",
prologues: prologuesAMD64,
fixFrameUnwindContext: amd64FixFrameUnwindContext,
switchStack: amd64SwitchStack,
regSize: amd64RegSize,
RegistersToDwarfRegisters: amd64RegistersToDwarfRegisters,
addrAndStackRegsToDwarfRegisters: amd64AddrAndStackRegsToDwarfRegisters,
DwarfRegisterToString: amd64DwarfRegisterToString,
inhibitStepInto: func(*BinaryInfo, uint64) bool { return false },
asmDecode: amd64AsmDecode,
PCRegNum: regnum.AMD64_Rip,
SPRegNum: regnum.AMD64_Rsp,
BPRegNum: regnum.AMD64_Rbp,
ContextRegNum: regnum.AMD64_Rdx,
asmRegisters: amd64AsmRegisters,
RegisterNameToDwarf: nameToDwarfFunc(regnum.AMD64NameToDwarf),
RegnumToString: regnum.AMD64ToName,
debugCallMinStackSize: 256,
maxRegArgBytes: 9*8 + 15*8,
argumentRegs: []int{regnum.AMD64_Rax, regnum.AMD64_Rbx, regnum.AMD64_Rcx},
}
}
func amd64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext {
a := bi.Arch
if a.sigreturnfn == nil {
a.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn")
}
if fctxt == nil || (a.sigreturnfn != nil && pc >= a.sigreturnfn.Entry && pc < a.sigreturnfn.End) {
// When there's no frame descriptor entry use BP (the frame pointer) instead
// - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()])
// - cfa is bp + a.PtrSize()*2
// - bp is [bp] (i.e. [cfa-a.PtrSize()*2])
// - sp is cfa
// When the signal handler runs it will move the execution to the signal
// handling stack (installed using the sigaltstack system call).
// This isn't a proper stack switch: the pointer to g in TLS will still
// refer to whatever g was executing on that thread before the signal was
// received.
// Since go did not execute a stack switch the previous value of sp, pc
// and bp is not saved inside g.sched, as it normally would.
// The only way to recover is to either read sp/pc from the signal context
// parameter (the ucontext_t* parameter) or to unconditionally follow the
// frame pointer when we get to runtime.sigreturn (which is what we do
// here).
return &frame.FrameContext{
RetAddrReg: regnum.AMD64_Rip,
Regs: map[uint64]frame.DWRule{
regnum.AMD64_Rip: {
Rule: frame.RuleOffset,
Offset: int64(-a.PtrSize()),
},
regnum.AMD64_Rbp: {
Rule: frame.RuleOffset,
Offset: int64(-2 * a.PtrSize()),
},
regnum.AMD64_Rsp: {
Rule: frame.RuleValOffset,
Offset: 0,
},
},
CFA: frame.DWRule{
Rule: frame.RuleCFA,
Reg: regnum.AMD64_Rbp,
Offset: int64(2 * a.PtrSize()),
},
}
}
if a.crosscall2fn == nil {
a.crosscall2fn = bi.lookupOneFunc("crosscall2")
}
if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End {
rule := fctxt.CFA
if rule.Offset == crosscall2SPOffsetBad {
switch bi.GOOS {
case "windows":
rule.Offset += crosscall2SPOffsetWindowsAMD64
default:
rule.Offset += crosscall2SPOffset
}
}
fctxt.CFA = rule
}
// We assume that RBP is the frame pointer, and we want to keep it updated,
// so that we can use it to unwind the stack even when we encounter frames
// without descriptor entries.
// If there isn't a rule already we emit one.
if fctxt.Regs[regnum.AMD64_Rbp].Rule == frame.RuleUndefined {
fctxt.Regs[regnum.AMD64_Rbp] = frame.DWRule{
Rule: frame.RuleFramePointer,
Reg: regnum.AMD64_Rbp,
Offset: 0,
}
}
return fctxt
}
// cgocallSPOffsetSaveSlot is the offset from systemstack.SP where
// (goroutine.SP - StackHi) is saved in runtime.asmcgocall after the stack
// switch happens.
const amd64cgocallSPOffsetSaveSlot = 0x28
func amd64SwitchStack(it *stackIterator, _ *op.DwarfRegisters) bool {
if it.frame.Current.Fn == nil {
if it.systemstack && it.g != nil && it.top {
it.switchToGoroutineStack()
return true
}
return false
}
switch it.frame.Current.Fn.Name {
case "runtime.asmcgocall":
if it.top || !it.systemstack {
return false
}
// This function is called by a goroutine to execute a C function and
// switches from the goroutine stack to the system stack.
// Since we are unwinding the stack from callee to caller we have to switch
// from the system stack to the goroutine stack.
off, _ := readIntRaw(it.mem, it.regs.SP()+amd64cgocallSPOffsetSaveSlot, int64(it.bi.Arch.PtrSize())) // reads "offset of SP from StackHi" from where runtime.asmcgocall saved it
oldsp := it.regs.SP()
it.regs.Reg(it.regs.SPRegNum).Uint64Val = uint64(int64(it.stackhi) - off)
// runtime.asmcgocall can also be called from inside the system stack,
// in that case no stack switch actually happens
if it.regs.SP() == oldsp {
return false
}
it.systemstack = false
// advances to the next frame in the call stack
addrret := uint64(int64(it.regs.SP()) + int64(it.bi.Arch.PtrSize()))
it.frame.Ret, _ = readUintRaw(it.mem, addrret, int64(it.bi.Arch.PtrSize()))
it.pc = it.frame.Ret
it.top = false
return true
case "runtime.cgocallback_gofunc", "runtime.cgocallback":
// For a detailed description of how this works read the long comment at
// the start of $GOROOT/src/runtime/cgocall.go and the source code of
// runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_amd64.s
//
// When a C functions calls back into go it will eventually call into
// runtime.cgocallback_gofunc which is the function that does the stack
// switch from the system stack back into the goroutine stack
// Since we are going backwards on the stack here we see the transition
// as goroutine stack -> system stack.
if it.top || it.systemstack {
return false
}
it.loadG0SchedSP()
if it.g0_sched_sp <= 0 {
return false
}
// entering the system stack
it.regs.Reg(it.regs.SPRegNum).Uint64Val = it.g0_sched_sp
// reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack
it.g0_sched_sp, _ = readUintRaw(it.mem, it.regs.SP(), int64(it.bi.Arch.PtrSize()))
it.top = false
callFrameRegs, ret, retaddr := it.advanceRegs()
frameOnSystemStack := it.newStackframe(ret, retaddr)
it.pc = frameOnSystemStack.Ret
it.regs = callFrameRegs
it.systemstack = true
return true
case "runtime.goexit", "runtime.rt0_go":
// Look for "top of stack" functions.
it.atend = true
return true
case "runtime.mcall":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
it.atend = true
return true
case "runtime.mstart":
// Calls to runtime.systemstack will switch to the systemstack then:
// 1. alter the goroutine stack so that it looks like systemstack_switch
// was called
// 2. alter the system stack so that it looks like the bottom-most frame
// belongs to runtime.mstart
// If we find a runtime.mstart frame on the system stack of a goroutine
// parked on runtime.systemstack_switch we assume runtime.systemstack was
// called and continue tracing from the parked position.
if it.top || !it.systemstack || it.g == nil {
return false
}
if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" {
return false
}
it.switchToGoroutineStack()
return true
case "runtime.newstack", "runtime.systemstack":
if it.systemstack && it.g != nil {
it.switchToGoroutineStack()
return true
}
return false
default:
return false
}
}
// amd64RegSize returns the size (in bytes) of register regnum.
// The mapping between hardware registers and DWARF registers is specified
// in the System V ABI AMD64 Architecture Processor Supplement page 57,
// figure 3.36
// https://www.uclibc.org/docs/psABI-x86_64.pdf
func amd64RegSize(rn uint64) int {
// XMM registers
if rn > regnum.AMD64_Rip && rn <= 32 {
return 16
}
// x87 registers
if rn >= 33 && rn <= 40 {
return 10
}
return 8
}
func amd64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters {
dregs := initDwarfRegistersFromSlice(int(regnum.AMD64MaxRegNum()), regs, regnum.AMD64NameToDwarf)
dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.AMD64NameToDwarf))
return dr
}
func initDwarfRegistersFromSlice(maxRegs int, regs Registers, nameToDwarf map[string]int) []*op.DwarfRegister {
dregs := make([]*op.DwarfRegister, maxRegs+1)
regslice, _ := regs.Slice(false)
for _, reg := range regslice {
if dwarfReg, ok := nameToDwarf[strings.ToLower(reg.Name)]; ok {
dregs[dwarfReg] = reg.Reg
}
}
return dregs
}
func loadMoreDwarfRegistersFromSliceFunc(dr *op.DwarfRegisters, regs Registers, nameToDwarf map[string]int) func() {
return func() {
regslice, err := regs.Slice(true)
dr.FloatLoadError = err
for _, reg := range regslice {
name := strings.ToLower(reg.Name)
if dwarfReg, ok := nameToDwarf[name]; ok {
dr.AddReg(uint64(dwarfReg), reg.Reg)
} else if reg.Reg.Bytes != nil && (strings.HasPrefix(name, "ymm") || strings.HasPrefix(name, "zmm")) {
xmmIdx, ok := nameToDwarf["x"+name[1:]]
if !ok {
continue
}
xmmReg := dr.Reg(uint64(xmmIdx))
if xmmReg == nil || xmmReg.Bytes == nil {
continue
}
nb := make([]byte, 0, len(xmmReg.Bytes)+len(reg.Reg.Bytes))
nb = append(nb, xmmReg.Bytes...)
nb = append(nb, reg.Reg.Bytes...)
xmmReg.Bytes = nb
}
}
}
}
func amd64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters {
dregs := make([]*op.DwarfRegister, regnum.AMD64_Rip+1)
dregs[regnum.AMD64_Rip] = op.DwarfRegisterFromUint64(pc)
dregs[regnum.AMD64_Rsp] = op.DwarfRegisterFromUint64(sp)
dregs[regnum.AMD64_Rbp] = op.DwarfRegisterFromUint64(bp)
return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.AMD64_Rip, regnum.AMD64_Rsp, regnum.AMD64_Rbp, 0)
}
func amd64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) {
name = regnum.AMD64ToName(uint64(i))
if reg == nil {
return name, false, ""
}
switch n := strings.ToLower(name); n {
case "rflags":
return name, false, eflagsDescription.Describe(reg.Uint64Val, 64)
case "cw", "sw", "tw", "fop":
return name, true, fmt.Sprintf("%#04x", reg.Uint64Val)
case "mxcsr_mask":
return name, true, fmt.Sprintf("%#08x", reg.Uint64Val)
case "mxcsr":
return name, true, mxcsrDescription.Describe(reg.Uint64Val, 32)
default:
if reg.Bytes != nil && strings.HasPrefix(n, "xmm") {
return name, true, formatSSEReg(name, reg.Bytes)
} else if reg.Bytes != nil && strings.HasPrefix(n, "st(") {
return name, true, formatX87Reg(reg.Bytes)
} else if reg.Bytes == nil || (reg.Bytes != nil && len(reg.Bytes) <= 8) {
return name, false, fmt.Sprintf("%#016x", reg.Uint64Val)
} else {
return name, false, fmt.Sprintf("%#x", reg.Bytes)
}
}
}
func formatSSEReg(name string, reg []byte) string {
out := new(bytes.Buffer)
formatSSERegInternal(reg, out)
if len(reg) < 32 {
return out.String()
}
fmt.Fprintf(out, "\n\t[%sh] ", "Y"+name[1:])
formatSSERegInternal(reg[16:], out)
if len(reg) < 64 {
return out.String()
}
fmt.Fprintf(out, "\n\t[%shl] ", "Z"+name[1:])
formatSSERegInternal(reg[32:], out)
fmt.Fprintf(out, "\n\t[%shh] ", "Z"+name[1:])
formatSSERegInternal(reg[48:], out)
return out.String()
}
func formatSSERegInternal(xmm []byte, out *bytes.Buffer) {
buf := bytes.NewReader(xmm)
var vi [16]uint8
for i := range vi {
binary.Read(buf, binary.LittleEndian, &vi[i])
}
fmt.Fprintf(out, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8], vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0])
fmt.Fprintf(out, "\tv2_int={ %02x%02x%02x%02x%02x%02x%02x%02x %02x%02x%02x%02x%02x%02x%02x%02x }", vi[7], vi[6], vi[5], vi[4], vi[3], vi[2], vi[1], vi[0], vi[15], vi[14], vi[13], vi[12], vi[11], vi[10], vi[9], vi[8])
fmt.Fprintf(out, "\tv4_int={ %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x }", vi[3], vi[2], vi[1], vi[0], vi[7], vi[6], vi[5], vi[4], vi[11], vi[10], vi[9], vi[8], vi[15], vi[14], vi[13], vi[12])
fmt.Fprintf(out, "\tv8_int={ %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x }", vi[1], vi[0], vi[3], vi[2], vi[5], vi[4], vi[7], vi[6], vi[9], vi[8], vi[11], vi[10], vi[13], vi[12], vi[15], vi[14])
fmt.Fprintf(out, "\tv16_int={ %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x }", vi[0], vi[1], vi[2], vi[3], vi[4], vi[5], vi[6], vi[7], vi[8], vi[9], vi[10], vi[11], vi[12], vi[13], vi[14], vi[15])
buf.Seek(0, io.SeekStart)
var v2 [2]float64
for i := range v2 {
binary.Read(buf, binary.LittleEndian, &v2[i])
}
fmt.Fprintf(out, "\tv2_float={ %g %g }", v2[0], v2[1])
buf.Seek(0, io.SeekStart)
var v4 [4]float32
for i := range v4 {
binary.Read(buf, binary.LittleEndian, &v4[i])
}
fmt.Fprintf(out, "\tv4_float={ %g %g %g %g }", v4[0], v4[1], v4[2], v4[3])
}
func formatX87Reg(b []byte) string {
if len(b) < 10 {
return fmt.Sprintf("%#x", b)
}
mantissa := binary.LittleEndian.Uint64(b[:8])
exponent := binary.LittleEndian.Uint16(b[8:])
var f float64
fset := false
const (
_SIGNBIT = 1 << 15
_EXP_BIAS = (1 << 14) - 1 // 2^(n-1) - 1 = 16383
_SPECIALEXP = (1 << 15) - 1 // all bits set
_HIGHBIT = 1 << 63
_QUIETBIT = 1 << 62
)
sign := 1.0
if exponent&_SIGNBIT != 0 {
sign = -1.0
}
exponent &= ^uint16(_SIGNBIT)
NaN := math.NaN()
Inf := math.Inf(+1)
switch exponent {
case 0:
switch {
case mantissa == 0:
f = sign * 0.0
fset = true
case mantissa&_HIGHBIT != 0:
f = NaN
fset = true
}
case _SPECIALEXP:
switch {
case mantissa&_HIGHBIT == 0:
f = sign * Inf
fset = true
default:
f = NaN // signaling NaN
fset = true
}
default:
if mantissa&_HIGHBIT == 0 {
f = NaN
fset = true
}
}
if !fset {
significand := float64(mantissa) / (1 << 63)
f = sign * math.Ldexp(significand, int(exponent-_EXP_BIAS))
}
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, exponent)
binary.Write(&buf, binary.LittleEndian, mantissa)
return fmt.Sprintf("%#04x%016x\t%g", exponent, mantissa, f)
}
|