1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
package amd64util
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/go-delve/delve/pkg/proc"
)
// AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developer’s
// Manual, Volume 1: Basic Architecture.
type AMD64Xstate struct {
AMD64PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
Avx512State bool // contains AVX512 state
ZmmSpace [512]byte
zmmHi256offset int
}
// AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type AMD64PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xstate *AMD64Xstate) Decode() []proc.Register {
var regs []proc.Register
// x87 registers
regs = proc.AppendUint64Register(regs, "CW", uint64(xstate.Cwd))
regs = proc.AppendUint64Register(regs, "SW", uint64(xstate.Swd))
regs = proc.AppendUint64Register(regs, "TW", uint64(xstate.Ftw))
regs = proc.AppendUint64Register(regs, "FOP", uint64(xstate.Fop))
regs = proc.AppendUint64Register(regs, "FIP", xstate.Rip)
regs = proc.AppendUint64Register(regs, "FDP", xstate.Rdp)
for i := 0; i < len(xstate.StSpace); i += 4 {
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, uint64(xstate.StSpace[i+1])<<32|uint64(xstate.StSpace[i]))
binary.Write(&buf, binary.LittleEndian, uint16(xstate.StSpace[i+2]))
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ST(%d)", i/4), buf.Bytes())
}
// SSE registers
regs = proc.AppendUint64Register(regs, "MXCSR", uint64(xstate.Mxcsr))
regs = proc.AppendUint64Register(regs, "MXCSR_MASK", uint64(xstate.MxcrMask))
for i := 0; i < len(xstate.XmmSpace); i += 16 {
n := i / 16
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("XMM%d", n), xstate.XmmSpace[i:i+16])
if xstate.AvxState {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("YMM%d", n), xstate.YmmSpace[i:i+16])
if xstate.Avx512State {
regs = proc.AppendBytesRegister(regs, fmt.Sprintf("ZMM%d", n), xstate.ZmmSpace[n*32:(n+1)*32])
}
}
}
return regs
}
const (
_XSAVE_XMM_REGION_START = 160
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
_I386_LINUX_XSAVE_XCR0_OFFSET = 464
)
// xstate_bv is a type representing the xcr0 and xstate_bv bitmaps as
// described in section 13.1 and 13.3 of the Intel® 64 and IA-32 Architectures
// Software Developer’s Manual, Volume 1
type xstate_bv uint64
func (s xstate_bv) hasAVX() bool { return s&(1<<2) != 0 }
func (s xstate_bv) hasZMM_Hi256() bool { return s&(1<<6) != 0 }
func (s xstate_bv) hasHi16_ZMM() bool { return s&(1<<7) != 0 } //lint:ignore U1000 future use
func (s xstate_bv) hasPKRU() bool { return s&(1<<9) != 0 }
// AMD64XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developer’s Manual, Volume 1: Basic Architecture.
// If xstateZMMHi256Offset is zero, it will be guessed.
func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate, xstateZMMHi256Offset int) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, ®set.AMD64PtraceFpRegs); err != nil {
return err
}
}
xcr0 := xstate_bv(binary.LittleEndian.Uint64(xstateargs[_I386_LINUX_XSAVE_XCR0_OFFSET:][:8]))
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := xstate_bv(binary.LittleEndian.Uint64(xsaveheader[0:8]))
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
fmt.Printf("xcr0: %#x xstate_bv: %#x\n", xcr0, xstate_bv)
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if !xstate_bv.hasAVX() {
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
if !xstate_bv.hasZMM_Hi256() {
return nil
}
if xstateZMMHi256Offset == 0 {
// Guess ZMM_Hi256 component offset
// ref: https://github.com/bminor/binutils-gdb/blob/df89bdf0baf106c3b0a9fae53e4e48607a7f3f87/gdb/i387-tdep.c#L916
if xcr0.hasPKRU() && len(xstateargs) == 2440 {
// AMD CPUs supporting PKRU
xstateZMMHi256Offset = 896
} else {
// Intel CPUs supporting AVX512
xstateZMMHi256Offset = 1152
}
}
regset.zmmHi256offset = xstateZMMHi256Offset
avx512state := xstateargs[xstateZMMHi256Offset:]
regset.Avx512State = true
copy(regset.ZmmSpace[:], avx512state[:len(regset.ZmmSpace)])
// TODO(aarzilli): if xstate_bv.hasHi16_ZMM() is set then xstateargs[1664:2688]
// contains ZMM16 through ZMM31, those aren't just the higher 256bits, it's
// the full register so each is 64 bytes (512bits)
return nil
}
func (xstate *AMD64Xstate) SetXmmRegister(n int, value []byte) error {
if n >= 16 {
return fmt.Errorf("setting register XMM%d not supported", n)
}
if len(value) > 64 {
return fmt.Errorf("value of register XMM%d too large (%d bytes)", n, len(value))
}
// Copy least significant 16 bytes to Xsave area
xmmval := value
if len(xmmval) > 16 {
xmmval = xmmval[:16]
}
rest := value[len(xmmval):]
xmmpos := _XSAVE_XMM_REGION_START + (n * 16)
if xmmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: not in XSAVE area", n)
}
copy(xstate.Xsave[xmmpos:], xmmval)
if len(rest) == 0 {
return nil
}
// Copy bytes [16, 32) to Xsave area
ymmval := rest
if len(ymmval) > 16 {
ymmval = ymmval[:16]
}
rest = rest[len(ymmval):]
ymmpos := _XSAVE_EXTENDED_REGION_START + (n * 16)
if ymmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: bytes 16..%d not in XSAVE area", n, 16+len(ymmval))
}
copy(xstate.Xsave[ymmpos:], ymmval)
if len(rest) == 0 {
return nil
}
// Copy bytes [32, 64) to Xsave area
zmmval := rest
zmmpos := xstate.zmmHi256offset + (n * 32) //TODO: change this!!!
if zmmpos >= len(xstate.Xsave) {
return fmt.Errorf("could not set XMM%d: bytes 32..%d not in XSAVE area", n, 32+len(zmmval))
}
copy(xstate.Xsave[zmmpos:], zmmval)
return nil
}
|