1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
package proc
import (
"fmt"
"strings"
"github.com/go-delve/delve/pkg/dwarf/frame"
"github.com/go-delve/delve/pkg/dwarf/op"
)
// Arch represents a CPU architecture.
type Arch struct {
Name string // architecture name
ptrSize int
maxInstructionLength int
prologues []opcodeSeq
breakpointInstruction []byte
altBreakpointInstruction []byte
breakInstrMovesPC bool
derefTLS bool
usesLR bool // architecture uses a link register, also called RA on some architectures
PCRegNum uint64
SPRegNum uint64
BPRegNum uint64
ContextRegNum uint64 // register used to pass a closure context when calling a function pointer
LRRegNum uint64
// asmDecode decodes the assembly instruction starting at mem[0:] into asmInst.
// It assumes that the Loc and AtPC fields of asmInst have already been filled.
asmDecode func(asmInst *AsmInstruction, mem []byte, regs *op.DwarfRegisters, memrw MemoryReadWriter, bi *BinaryInfo) error
// fixFrameUnwindContext applies architecture specific rules for unwinding a stack frame
// on the given arch.
fixFrameUnwindContext func(*frame.FrameContext, uint64, *BinaryInfo) *frame.FrameContext
// switchStack will use the current frame to determine if it's time to
// switch between the system stack and the goroutine stack or vice versa.
switchStack func(it *stackIterator, callFrameRegs *op.DwarfRegisters) bool
// regSize returns the size (in bytes) of register regnum.
regSize func(uint64) int
// RegistersToDwarfRegisters maps hardware registers to DWARF registers.
RegistersToDwarfRegisters func(uint64, Registers) *op.DwarfRegisters
// addrAndStackRegsToDwarfRegisters returns DWARF registers from the passed in
// PC, SP, and BP registers in the format used by the DWARF expression interpreter.
addrAndStackRegsToDwarfRegisters func(uint64, uint64, uint64, uint64, uint64) op.DwarfRegisters
// DwarfRegisterToString returns the name and value representation of the
// given register, the register value can be nil in which case only the
// register name will be returned.
DwarfRegisterToString func(int, *op.DwarfRegister) (string, bool, string)
// inhibitStepInto returns whether StepBreakpoint can be set at pc.
inhibitStepInto func(bi *BinaryInfo, pc uint64) bool
RegisterNameToDwarf func(s string) (int, bool)
RegnumToString func(uint64) string
// debugCallMinStackSize is the minimum stack size for call injection on this architecture.
debugCallMinStackSize uint64
// maxRegArgBytes is extra padding for ABI1 call injections, equivalent to
// the maximum space occupied by register arguments.
maxRegArgBytes int
// argumentRegs are function call injection registers for runtimeOptimizedWorkaround
argumentRegs []int
// asmRegisters maps assembly register numbers to dwarf registers.
asmRegisters map[int]asmRegister
// crosscall2fn is the DIE of crosscall2, a function used by the go runtime
// to call C functions. This function in go 1.9 (and previous versions) had
// a bad frame descriptor which needs to be fixed to generate good stack
// traces.
crosscall2fn *Function
// sigreturnfn is the DIE of runtime.sigreturn, the return trampoline for
// the signal handler. See comment in FixFrameUnwindContext for a
// description of why this is needed.
sigreturnfn *Function
}
type asmRegister struct {
dwarfNum uint64
offset uint
mask uint64
}
const (
mask8 = 0x000000ff
mask16 = 0x0000ffff
mask32 = 0xffffffff
)
// PtrSize returns the size of a pointer for the architecture.
func (a *Arch) PtrSize() int {
return a.ptrSize
}
// MaxInstructionLength is the maximum size in bytes of an instruction.
func (a *Arch) MaxInstructionLength() int {
return a.maxInstructionLength
}
// BreakpointInstruction is the instruction that will trigger a breakpoint trap for
// the given architecture.
func (a *Arch) BreakpointInstruction() []byte {
return a.breakpointInstruction
}
// AltBreakpointInstruction returns an alternate encoding for the breakpoint instruction.
func (a *Arch) AltBreakpointInstruction() []byte {
return a.altBreakpointInstruction
}
// BreakInstrMovesPC is true if hitting the breakpoint instruction advances the
// instruction counter by the size of the breakpoint instruction.
func (a *Arch) BreakInstrMovesPC() bool {
return a.breakInstrMovesPC
}
// BreakpointSize is the size of the breakpoint instruction for the given architecture.
func (a *Arch) BreakpointSize() int {
return len(a.breakpointInstruction)
}
// DerefTLS is true if the G struct stored in the TLS section is a pointer
// and the address must be dereferenced to find to actual G struct.
func (a *Arch) DerefTLS() bool {
return a.derefTLS
}
// getAsmRegister returns the value of the asm register asmreg using the asmRegisters table of arch.
// The interpretation of asmreg is architecture specific and defined by the disassembler.
// A mask value of 0 inside asmRegisters is equivalent to ^uint64(0).
func (a *Arch) getAsmRegister(regs *op.DwarfRegisters, asmreg int) (uint64, error) {
hwreg, ok := a.asmRegisters[asmreg]
if !ok {
return 0, ErrUnknownRegister
}
reg := regs.Reg(hwreg.dwarfNum)
if reg == nil {
return 0, fmt.Errorf("register %#x not found", asmreg)
}
n := (reg.Uint64Val >> hwreg.offset)
if hwreg.mask != 0 {
n = n & hwreg.mask
}
return n, nil
}
func nameToDwarfFunc(n2d map[string]int) func(string) (int, bool) {
return func(name string) (int, bool) {
r, ok := n2d[strings.ToLower(name)]
return r, ok
}
}
// crosscall2 is defined in $GOROOT/src/runtime/cgo/asm_amd64.s.
const (
crosscall2SPOffsetBad = 0x8
crosscall2SPOffsetWindowsAMD64 = 0x118
crosscall2SPOffsetLinuxPPC64LE = 0x158
crosscall2SPOffset = 0x58
)
|