1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
|
package proc
import (
"bytes"
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"go/printer"
"go/token"
"reflect"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/dwarf/reader"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/proc/internal/ebpf"
)
const (
// UnrecoveredPanic is the name given to the unrecovered panic breakpoint.
UnrecoveredPanic = "unrecovered-panic"
// FatalThrow is the name given to the breakpoint triggered when the target
// process dies because of a fatal runtime error.
FatalThrow = "runtime-fatal-throw"
// HardcodedBreakpoint is the name given to hardcoded breakpoints (for
// example: calls to runtime.Breakpoint)
HardcodedBreakpoint = "hardcoded-breakpoint"
unrecoveredPanicID = -1
fatalThrowID = -2
hardcodedBreakpointID = -3
NoLogicalID = -1000 // Logical breakpoint ID for breakpoints internal breakpoints.
)
// Breakpoint represents a physical breakpoint. Stores information on the break
// point including the byte of data that originally was stored at that
// address.
type Breakpoint struct {
// File & line information for printing.
FunctionName string
File string
Line int
Addr uint64 // Address breakpoint is set for.
OriginalData []byte // If software breakpoint, the data we replace with breakpoint instruction.
WatchExpr string
WatchType WatchType
HWBreakIndex uint8 // hardware breakpoint index
watchStackOff int64 // for watchpoints of stack variables, offset of the address from top of the stack
// Breaklets is the list of overlapping breakpoints on this physical breakpoint.
// There can be at most one UserBreakpoint in this list but multiple internal breakpoints are allowed.
Breaklets []*Breaklet
// Breakpoint information
Logical *LogicalBreakpoint
// ReturnInfo describes how to collect return variables when this
// breakpoint is hit as a return breakpoint.
returnInfo *returnBreakpointInfo
// RootFuncName is the name of the root function from where tracing needs to be done
RootFuncName string
// TraceFollowCalls indicates the depth of tracing
TraceFollowCalls int
}
// Breaklet represents one of multiple breakpoints that can overlap on a
// single physical breakpoint.
type Breaklet struct {
// Kind describes whether this is a stepping breakpoint (for next'ing or
// stepping).
Kind BreakpointKind
LogicalID int // ID of the logical breakpoint that owns this physical breakpoint
// Cond: if not nil the breakpoint will be triggered only if evaluating Cond returns true
Cond ast.Expr
// DeferReturns: when kind == NextDeferBreakpoint this breakpoint
// will also check if the caller is runtime.gopanic or if the return
// address is in the DeferReturns array.
// Next uses NextDeferBreakpoints for the breakpoint it sets on the
// deferred function, DeferReturns is populated with the
// addresses of calls to runtime.deferreturn in the current
// function. This ensures that the breakpoint on the deferred
// function only triggers on panic or on the defer call to
// the function, not when the function is called directly
DeferReturns []uint64
// checkPanicCall checks that the breakpoint happened while the function was
// called by a panic. It is only checked for WatchOutOfScopeBreakpoint Kind.
checkPanicCall bool
// callback is called if every other condition for this breaklet is met,
// the return value will determine if the breaklet should be considered
// active.
// The callback can have side-effects.
callback func(th Thread, p *Target) (bool, error)
// For WatchOutOfScopeBreakpoints and StackResizeBreakpoints the watchpoint
// field contains the watchpoint related to this out of scope sentinel.
watchpoint *Breakpoint
}
// BreakpointKind determines the behavior of delve when the
// breakpoint is reached.
type BreakpointKind uint16
const (
// UserBreakpoint is a user set breakpoint
UserBreakpoint BreakpointKind = (1 << iota)
// NextBreakpoint is a breakpoint set by Next, Continue
// will stop on it and delete it
NextBreakpoint
// NextDeferBreakpoint is a breakpoint set by Next on the
// first deferred function. In addition to checking their condition
// breakpoints of this kind will also check that the function has been
// called by runtime.gopanic or through runtime.deferreturn.
NextDeferBreakpoint
// StepBreakpoint is a breakpoint set by Step on a CALL instruction,
// Continue will set a new breakpoint (of NextBreakpoint kind) on the
// destination of CALL, delete this breakpoint and then continue again
StepBreakpoint
// WatchOutOfScopeBreakpoint is a breakpoint used to detect when a watched
// stack variable goes out of scope.
WatchOutOfScopeBreakpoint
// StackResizeBreakpoint is a breakpoint used to detect stack resizes to
// adjust the watchpoint of stack variables.
StackResizeBreakpoint
// PluginOpenBreakpoint is a breakpoint used to detect that a plugin has
// been loaded and we should try to enable suspended breakpoints.
PluginOpenBreakpoint
// StepIntoNewProc is a breakpoint used to step into a newly created
// goroutine.
StepIntoNewProcBreakpoint
// NextInactivatedBreakpoint a NextBreakpoint that has been inactivated, see rangeFrameInactivateNextBreakpoints
NextInactivatedBreakpoint
StepIntoRangeOverFuncBodyBreakpoint
steppingMask = NextBreakpoint | NextDeferBreakpoint | StepBreakpoint | StepIntoNewProcBreakpoint | NextInactivatedBreakpoint | StepIntoRangeOverFuncBodyBreakpoint
)
// WatchType is the watchpoint type
type WatchType uint8
const (
WatchRead WatchType = 1 << iota
WatchWrite
)
// Read returns true if the hardware breakpoint should trigger on memory reads.
func (wtype WatchType) Read() bool {
return wtype&WatchRead != 0
}
// Write returns true if the hardware breakpoint should trigger on memory writes.
func (wtype WatchType) Write() bool {
return wtype&WatchWrite != 0
}
// Size returns the size in bytes of the hardware breakpoint.
func (wtype WatchType) Size() int {
return int(wtype >> 4)
}
// withSize returns a new HWBreakType with the size set to the specified value
func (wtype WatchType) withSize(sz uint8) WatchType {
return WatchType((sz << 4) | uint8(wtype&0xf))
}
var ErrHWBreakUnsupported = errors.New("hardware breakpoints not implemented")
func (bp *Breakpoint) String() string {
return fmt.Sprintf("Breakpoint %d at %#v %s:%d", bp.LogicalID(), bp.Addr, bp.File, bp.Line)
}
func (bp *Breakpoint) LogicalID() int {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == UserBreakpoint {
return breaklet.LogicalID
}
}
return NoLogicalID
}
// VerboseDescr returns a string describing parts of the breakpoint struct
// that aren't otherwise user visible, for debugging purposes.
func (bp *Breakpoint) VerboseDescr() []string {
r := []string{}
r = append(r, fmt.Sprintf("OriginalData=%#x", bp.OriginalData))
if bp.WatchType != 0 {
r = append(r, fmt.Sprintf("HWBreakIndex=%#x watchStackOff=%#x", bp.HWBreakIndex, bp.watchStackOff))
}
lbp := bp.Logical
for _, breaklet := range bp.Breaklets {
switch breaklet.Kind {
case UserBreakpoint:
r = append(r, fmt.Sprintf("User Cond=%q HitCond=%v", exprToString(breaklet.Cond), lbp.hitCond))
case NextBreakpoint:
r = append(r, fmt.Sprintf("Next Cond=%q", exprToString(breaklet.Cond)))
case NextDeferBreakpoint:
r = append(r, fmt.Sprintf("NextDefer Cond=%q DeferReturns=%#x", exprToString(breaklet.Cond), breaklet.DeferReturns))
case StepBreakpoint:
r = append(r, fmt.Sprintf("Step Cond=%q", exprToString(breaklet.Cond)))
case WatchOutOfScopeBreakpoint:
r = append(r, fmt.Sprintf("WatchOutOfScope Cond=%q checkPanicCall=%v", exprToString(breaklet.Cond), breaklet.checkPanicCall))
case StackResizeBreakpoint:
r = append(r, fmt.Sprintf("StackResizeBreakpoint Cond=%q", exprToString(breaklet.Cond)))
case PluginOpenBreakpoint:
r = append(r, "PluginOpenBreakpoint")
case StepIntoNewProcBreakpoint:
r = append(r, "StepIntoNewProcBreakpoint")
case NextInactivatedBreakpoint:
r = append(r, "NextInactivatedBreakpoint")
case StepIntoRangeOverFuncBodyBreakpoint:
r = append(r, "StepIntoRangeOverFuncBodyBreakpoint Cond=%q", exprToString(breaklet.Cond))
default:
r = append(r, fmt.Sprintf("Unknown %d", breaklet.Kind))
}
}
return r
}
// BreakpointExistsError is returned when trying to set a breakpoint at
// an address that already has a breakpoint set for it.
type BreakpointExistsError struct {
File string
Line int
Addr uint64
}
func (bpe BreakpointExistsError) Error() string {
return fmt.Sprintf("Breakpoint exists at %s:%d at %x", bpe.File, bpe.Line, bpe.Addr)
}
// InvalidAddressError represents the result of
// attempting to set a breakpoint at an invalid address.
type InvalidAddressError struct {
Address uint64
}
func (iae InvalidAddressError) Error() string {
return fmt.Sprintf("Invalid address %#v\n", iae.Address)
}
type returnBreakpointInfo struct {
retFrameCond ast.Expr
fn *Function
frameOffset int64
spOffset int64
}
// CheckCondition evaluates bp's condition on thread.
func (bp *Breakpoint) checkCondition(tgt *Target, thread Thread, bpstate *BreakpointState) {
*bpstate = BreakpointState{Breakpoint: bp, Active: false, Stepping: false, SteppingInto: false, CondError: nil}
for _, breaklet := range bp.Breaklets {
bpstate.checkCond(tgt, breaklet, thread)
}
}
func (bpstate *BreakpointState) checkCond(tgt *Target, breaklet *Breaklet, thread Thread) {
var condErr error
active := true
if breaklet.Cond != nil {
active, condErr = evalBreakpointCondition(tgt, thread, breaklet.Cond)
}
if condErr != nil && bpstate.CondError == nil {
bpstate.CondError = condErr
}
if !active {
return
}
switch breaklet.Kind {
case UserBreakpoint:
var goroutineID int64
lbp := bpstate.Breakpoint.Logical
if lbp != nil {
if g, err := GetG(thread); err == nil {
goroutineID = g.ID
lbp.HitCount[goroutineID]++
}
lbp.TotalHitCount++
}
active = checkHitCond(lbp, goroutineID)
case StepBreakpoint, NextBreakpoint, NextDeferBreakpoint:
nextDeferOk := true
if breaklet.Kind&NextDeferBreakpoint != 0 {
frames, err := ThreadStacktrace(tgt, thread, 2)
if err == nil {
nextDeferOk, _ = isPanicCall(frames)
if !nextDeferOk {
nextDeferOk, _ = isDeferReturnCall(frames, breaklet.DeferReturns)
}
}
}
active = active && nextDeferOk
case WatchOutOfScopeBreakpoint:
if breaklet.checkPanicCall {
frames, err := ThreadStacktrace(tgt, thread, 2)
if err == nil {
ipc, _ := isPanicCall(frames)
active = active && ipc
}
}
case StackResizeBreakpoint, PluginOpenBreakpoint, StepIntoNewProcBreakpoint, StepIntoRangeOverFuncBodyBreakpoint:
// no further checks
case NextInactivatedBreakpoint:
active = false
default:
bpstate.CondError = fmt.Errorf("internal error unknown breakpoint kind %v", breaklet.Kind)
}
if active {
if breaklet.callback != nil {
var err error
active, err = breaklet.callback(thread, tgt)
if err != nil && bpstate.CondError == nil {
bpstate.CondError = err
}
}
bpstate.Active = active
}
if bpstate.Active {
switch breaklet.Kind {
case NextBreakpoint, NextDeferBreakpoint:
bpstate.Stepping = true
case StepBreakpoint:
bpstate.Stepping = true
bpstate.SteppingInto = true
case StepIntoRangeOverFuncBodyBreakpoint:
bpstate.Stepping = true
bpstate.SteppingIntoRangeOverFuncBody = true
}
}
}
// checkHitCond evaluates bp's hit condition on thread.
func checkHitCond(lbp *LogicalBreakpoint, goroutineID int64) bool {
if lbp == nil || lbp.hitCond == nil {
return true
}
hitCount := int(lbp.TotalHitCount)
if lbp.HitCondPerG && goroutineID > 0 {
hitCount = int(lbp.HitCount[goroutineID])
}
// Evaluate the breakpoint condition.
switch lbp.hitCond.Op {
case token.EQL:
return hitCount == lbp.hitCond.Val
case token.NEQ:
return hitCount != lbp.hitCond.Val
case token.GTR:
return hitCount > lbp.hitCond.Val
case token.LSS:
return hitCount < lbp.hitCond.Val
case token.GEQ:
return hitCount >= lbp.hitCond.Val
case token.LEQ:
return hitCount <= lbp.hitCond.Val
case token.REM:
return hitCount%lbp.hitCond.Val == 0
}
return false
}
func isPanicCall(frames []Stackframe) (bool, int) {
// In Go prior to 1.17 the call stack for a panic is:
// 0. deferred function call
// 1. runtime.callN
// 2. runtime.gopanic
// in Go after 1.17 it is either:
// 0. deferred function call
// 1. deferred call wrapper
// 2. runtime.gopanic
// or:
// 0. deferred function call
// 1. runtime.gopanic
if len(frames) >= 3 && frames[2].Current.Fn != nil && frames[2].Current.Fn.Name == "runtime.gopanic" {
return true, 2
}
if len(frames) >= 2 && frames[1].Current.Fn != nil && frames[1].Current.Fn.Name == "runtime.gopanic" {
return true, 1
}
return false, 0
}
func isDeferReturnCall(frames []Stackframe, deferReturns []uint64) (bool, uint64) {
if len(frames) >= 2 && (len(deferReturns) > 0) {
// On Go 1.18 and later runtime.deferreturn doesn't use jmpdefer anymore,
// it's a normal function making normal calls to deferred functions.
if frames[1].Current.Fn != nil && frames[1].Current.Fn.Name == "runtime.deferreturn" {
return true, 0
}
}
if len(frames) >= 1 {
for _, pc := range deferReturns {
if frames[0].Ret == pc {
return true, pc
}
}
}
return false, 0
}
// IsStepping returns true if bp is an stepping breakpoint.
// User-set breakpoints can overlap with stepping breakpoints, in that case
// both IsUser and IsStepping will be true.
func (bp *Breakpoint) IsStepping() bool {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind&steppingMask != 0 {
return true
}
}
return false
}
// IsUser returns true if bp is a user-set breakpoint.
// User-set breakpoints can overlap with stepping breakpoints, in that case
// both IsUser and IsStepping will be true.
func (bp *Breakpoint) IsUser() bool {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == UserBreakpoint {
return true
}
}
return false
}
// UserBreaklet returns the user breaklet for this breakpoint, or nil if
// none exist.
func (bp *Breakpoint) UserBreaklet() *Breaklet {
for _, breaklet := range bp.Breaklets {
if breaklet.Kind == UserBreakpoint {
return breaklet
}
}
return nil
}
func evalBreakpointCondition(tgt *Target, thread Thread, cond ast.Expr) (bool, error) {
if cond == nil {
return true, nil
}
scope, err := GoroutineScope(tgt, thread)
if err != nil {
scope, err = ThreadScope(tgt, thread)
if err != nil {
return true, err
}
}
v, err := scope.evalAST(cond)
if err != nil {
return true, fmt.Errorf("error evaluating expression: %v", err)
}
if v.Kind != reflect.Bool {
return true, errors.New("condition expression not boolean")
}
v.loadValue(loadFullValue)
if v.Unreadable != nil {
return true, fmt.Errorf("condition expression unreadable: %v", v.Unreadable)
}
return constant.BoolVal(v.Value), nil
}
// NoBreakpointError is returned when trying to
// clear a breakpoint that does not exist.
type NoBreakpointError struct {
Addr uint64
}
func (nbp NoBreakpointError) Error() string {
return fmt.Sprintf("no breakpoint at %#v", nbp.Addr)
}
// BreakpointMap represents an (address, breakpoint) map.
type BreakpointMap struct {
M map[uint64]*Breakpoint
// Logical is a map of logical breakpoints.
Logical map[int]*LogicalBreakpoint
// WatchOutOfScope is the list of watchpoints that went out of scope during
// the last resume operation
WatchOutOfScope []*Breakpoint
}
// NewBreakpointMap creates a new BreakpointMap.
func NewBreakpointMap() BreakpointMap {
return BreakpointMap{
M: make(map[uint64]*Breakpoint),
}
}
// SetBreakpoint sets a breakpoint at addr, and stores it in the process wide
// break point table.
func (t *Target) SetBreakpoint(logicalID int, addr uint64, kind BreakpointKind, cond ast.Expr) (*Breakpoint, error) {
return t.setBreakpointInternal(logicalID, addr, kind, 0, cond)
}
// SetEBPFTracepoint will attach a uprobe to the function
// specified by 'fnName'.
func (t *Target) SetEBPFTracepoint(fnName string) error {
// Not every OS/arch that we support has support for eBPF,
// so check early and return an error if this is called on an
// unsupported system.
if !t.proc.SupportsBPF() {
return errors.New("eBPF is not supported")
}
fns, err := t.BinInfo().FindFunction(fnName)
if err != nil {
return err
}
// Get information on the Goroutine so we can tell the
// eBPF program where to find it in order to get the
// goroutine ID.
rdr := t.BinInfo().Images[0].DwarfReader()
rdr.SeekToTypeNamed("runtime.g")
typ, err := t.BinInfo().findType("runtime.g")
if err != nil {
return errors.New("could not find type for runtime.g")
}
var goidOffset int64
switch t := typ.(type) {
case *godwarf.StructType:
for _, field := range t.Field {
if field.Name == "goid" {
goidOffset = field.ByteOffset
break
}
}
}
for _, fn := range fns {
err := t.setEBPFTracepointOnFunc(fn, goidOffset)
if err != nil {
return err
}
}
return nil
}
func (t *Target) setEBPFTracepointOnFunc(fn *Function, goidOffset int64) error {
// Start putting together the argument map. This will tell the eBPF program
// all of the arguments we want to trace and how to find them.
// Start looping through each argument / return parameter for the function we
// are setting the uprobe on. Parse location information so that we can pass it
// along to the eBPF program.
dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset)
if err != nil {
return err
}
variablesFlags := reader.VariablesOnlyVisible
if t.BinInfo().Producer() != "" && goversion.ProducerAfterOrEqual(t.BinInfo().Producer(), 1, 15) {
variablesFlags |= reader.VariablesTrustDeclLine
}
_, l := t.BinInfo().EntryLineForFunc(fn)
var args []ebpf.UProbeArgMap
varEntries := reader.Variables(dwarfTree, fn.Entry, l, variablesFlags)
for _, entry := range varEntries {
_, dt, err := readVarEntry(entry.Tree, fn.cu.image)
if err != nil {
return err
}
offset, pieces, _, err := t.BinInfo().Location(entry, dwarf.AttrLocation, fn.Entry, op.DwarfRegisters{}, nil)
if err != nil {
return err
}
paramPieces := make([]int, 0, len(pieces))
for _, piece := range pieces {
if piece.Kind == op.RegPiece {
paramPieces = append(paramPieces, int(piece.Val))
}
}
isret, _ := entry.Val(dwarf.AttrVarParam).(bool)
offset += int64(t.BinInfo().Arch.PtrSize())
args = append(args, ebpf.UProbeArgMap{
Offset: offset,
Size: dt.Size(),
Kind: dt.Common().ReflectKind,
Pieces: paramPieces,
InReg: len(pieces) > 0,
Ret: isret,
})
}
//TODO(aarzilli): inlined calls?
// Finally, set the uprobe on the function.
return t.proc.SetUProbe(fn.Name, goidOffset, args)
}
// SetWatchpoint sets a data breakpoint at addr and stores it in the
// process wide break point table.
func (t *Target) SetWatchpoint(logicalID int, scope *EvalScope, expr string, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if (wtype&WatchWrite == 0) && (wtype&WatchRead == 0) {
return nil, errors.New("at least one of read and write must be set for watchpoint")
}
n, err := parser.ParseExpr(expr)
if err != nil {
return nil, err
}
xv, err := scope.evalAST(n)
if err != nil {
return nil, err
}
if xv.Addr == 0 || xv.Flags&VariableFakeAddress != 0 || xv.DwarfType == nil {
return nil, fmt.Errorf("can not watch %q", expr)
}
if xv.Unreadable != nil {
return nil, fmt.Errorf("expression %q is unreadable: %v", expr, xv.Unreadable)
}
if xv.Kind == reflect.UnsafePointer || xv.Kind == reflect.Invalid {
return nil, fmt.Errorf("can not watch variable of type %s", xv.Kind.String())
}
sz := xv.DwarfType.Size()
if sz <= 0 || sz > int64(t.BinInfo().Arch.PtrSize()) {
//TODO(aarzilli): it is reasonable to expect to be able to watch string
//and interface variables and we could support it by watching certain
//member fields here.
return nil, fmt.Errorf("can not watch variable of type %s", xv.DwarfType.String())
}
stackWatch := scope.g != nil && !scope.g.SystemStack && xv.Addr >= scope.g.stack.lo && xv.Addr < scope.g.stack.hi
if stackWatch && wtype&WatchRead != 0 {
// In theory this would work except for the fact that the runtime will
// read them randomly to resize stacks so it doesn't make sense to do
// this.
return nil, errors.New("can not watch stack allocated variable for reads")
}
bp, err := t.setBreakpointInternal(logicalID, xv.Addr, UserBreakpoint, wtype.withSize(uint8(sz)), cond)
if err != nil {
return bp, err
}
bp.WatchExpr = expr
if stackWatch {
bp.watchStackOff = int64(bp.Addr) - int64(scope.g.stack.hi)
err := t.setStackWatchBreakpoints(scope, bp)
if err != nil {
return bp, err
}
}
return bp, nil
}
func (t *Target) setBreakpointInternal(logicalID int, addr uint64, kind BreakpointKind, wtype WatchType, cond ast.Expr) (*Breakpoint, error) {
if valid, err := t.Valid(); !valid {
recorded, _ := t.recman.Recorded()
if !recorded {
return nil, err
}
}
bpmap := t.Breakpoints()
newBreaklet := &Breaklet{Kind: kind, Cond: cond}
if kind == UserBreakpoint {
newBreaklet.LogicalID = logicalID
}
setLogicalBreakpoint := func(bp *Breakpoint) {
if kind != UserBreakpoint || bp.Logical != nil {
return
}
if bpmap.Logical == nil {
bpmap.Logical = make(map[int]*LogicalBreakpoint)
}
lbp := bpmap.Logical[logicalID]
if lbp == nil {
lbp = &LogicalBreakpoint{LogicalID: logicalID}
lbp.HitCount = make(map[int64]uint64)
lbp.enabled = true
lbp.condSatisfiable = true
bpmap.Logical[logicalID] = lbp
}
bp.Logical = lbp
breaklet := bp.UserBreaklet()
if breaklet != nil && breaklet.Cond == nil {
breaklet.Cond = lbp.cond
}
if lbp.File == "" && lbp.Line == 0 {
lbp.File = bp.File
lbp.Line = bp.Line
} else if bp.File != lbp.File || bp.Line != lbp.Line {
lbp.File = "<multiple locations>"
lbp.Line = 0
}
fn := t.BinInfo().PCToFunc(bp.Addr)
if fn != nil {
lbp.FunctionName = fn.NameWithoutTypeParams()
}
}
if bp, ok := bpmap.M[addr]; ok {
if !bp.canOverlap(kind) {
return bp, BreakpointExistsError{bp.File, bp.Line, bp.Addr}
}
bp.Breaklets = append(bp.Breaklets, newBreaklet)
setLogicalBreakpoint(bp)
return bp, nil
}
f, l, fn := t.BinInfo().PCToLine(addr)
fnName := ""
if fn != nil {
fnName = fn.Name
}
hwidx := uint8(0)
if wtype != 0 {
m := make(map[uint8]bool)
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
m[bp.HWBreakIndex] = true
}
}
for hwidx = 0; true; hwidx++ {
if !m[hwidx] {
break
}
}
}
newBreakpoint := &Breakpoint{
FunctionName: fnName,
WatchType: wtype,
HWBreakIndex: hwidx,
File: f,
Line: l,
Addr: addr,
}
err := t.proc.WriteBreakpoint(newBreakpoint)
if err != nil {
return nil, err
}
newBreakpoint.Breaklets = append(newBreakpoint.Breaklets, newBreaklet)
setLogicalBreakpoint(newBreakpoint)
bpmap.M[addr] = newBreakpoint
return newBreakpoint, nil
}
// canOverlap returns true if a breakpoint of kind can be overlapped to the
// already existing breaklets in bp.
// At most one user breakpoint can be set but multiple internal breakpoints are allowed.
// All other internal breakpoints are allowed to overlap freely.
func (bp *Breakpoint) canOverlap(kind BreakpointKind) bool {
if kind == UserBreakpoint {
return !bp.IsUser()
}
return true
}
// ClearBreakpoint clears the breakpoint at addr.
func (t *Target) ClearBreakpoint(addr uint64) error {
if valid, err := t.Valid(); !valid {
recorded, _ := t.recman.Recorded()
if !recorded {
return err
}
}
bp, ok := t.Breakpoints().M[addr]
if !ok {
return NoBreakpointError{Addr: addr}
}
for i := range bp.Breaklets {
if bp.Breaklets[i].Kind == UserBreakpoint {
bp.Breaklets[i] = nil
if bp.WatchExpr == "" {
bp.Logical = nil
}
}
}
_, err := t.finishClearBreakpoint(bp)
if err != nil {
return err
}
if bp.WatchExpr != "" && bp.watchStackOff != 0 {
// stack watchpoint, must remove all its WatchOutOfScopeBreakpoints/StackResizeBreakpoints
err := t.clearStackWatchBreakpoints(bp)
if err != nil {
return err
}
}
return nil
}
// ClearSteppingBreakpoints removes all stepping breakpoints from the map,
// calling clearBreakpoint on each one.
func (t *Target) ClearSteppingBreakpoints() error {
bpmap := t.Breakpoints()
threads := t.ThreadList()
for _, bp := range bpmap.M {
for i := range bp.Breaklets {
if bp.Breaklets[i].Kind&steppingMask != 0 {
bp.Breaklets[i] = nil
}
}
cleared, err := t.finishClearBreakpoint(bp)
if err != nil {
return err
}
if cleared {
for _, thread := range threads {
if thread.Breakpoint().Breakpoint == bp {
thread.Breakpoint().Clear()
}
}
}
}
return nil
}
func (t *Target) clearInactivatedSteppingBreakpoint() error {
threads := t.ThreadList()
for _, bp := range t.Breakpoints().M {
for i := range bp.Breaklets {
if bp.Breaklets[i].Kind == NextInactivatedBreakpoint {
bp.Breaklets[i] = nil
}
}
cleared, err := t.finishClearBreakpoint(bp)
if err != nil {
return err
}
if cleared {
for _, thread := range threads {
if thread.Breakpoint().Breakpoint == bp {
thread.Breakpoint().Clear()
}
}
}
}
return nil
}
// finishClearBreakpoint clears nil breaklets from the breaklet list of bp
// and if it is empty erases the breakpoint.
// Returns true if the breakpoint was deleted
func (t *Target) finishClearBreakpoint(bp *Breakpoint) (bool, error) {
oldBreaklets := bp.Breaklets
bp.Breaklets = bp.Breaklets[:0]
for _, breaklet := range oldBreaklets {
if breaklet != nil {
bp.Breaklets = append(bp.Breaklets, breaklet)
}
}
if len(bp.Breaklets) > 0 {
return false, nil
}
if err := t.proc.EraseBreakpoint(bp); err != nil {
return false, err
}
delete(t.Breakpoints().M, bp.Addr)
if bp.WatchExpr != "" && bp.Logical != nil {
delete(t.Breakpoints().Logical, bp.Logical.LogicalID)
}
return true, nil
}
// HasSteppingBreakpoints returns true if bpmap has at least one stepping
// breakpoint set.
func (bpmap *BreakpointMap) HasSteppingBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.IsStepping() {
return true
}
}
return false
}
// HasHWBreakpoints returns true if there are hardware breakpoints.
func (bpmap *BreakpointMap) HasHWBreakpoints() bool {
for _, bp := range bpmap.M {
if bp.WatchType != 0 {
return true
}
}
return false
}
// BreakpointState describes the state of a breakpoint in a thread.
type BreakpointState struct {
*Breakpoint
// Active is true if the condition of any breaklet is met.
Active bool
// Stepping is true if one of the active breaklets is a stepping
// breakpoint.
Stepping bool
// SteppingInto is true if one of the active stepping breaklets has Kind ==
// StepBreakpoint.
SteppingInto bool
SteppingIntoRangeOverFuncBody bool
// CondError contains any error encountered while evaluating the
// breakpoint's condition.
CondError error
}
// Clear zeros the struct.
func (bpstate *BreakpointState) Clear() {
bpstate.Breakpoint = nil
bpstate.Active = false
bpstate.Stepping = false
bpstate.SteppingInto = false
bpstate.CondError = nil
}
func (bpstate *BreakpointState) String() string {
s := bpstate.Breakpoint.String()
if bpstate.Active {
s += " active"
}
if bpstate.Stepping {
s += " stepping"
}
return s
}
func configureReturnBreakpoint(bi *BinaryInfo, bp *Breakpoint, topframe *Stackframe, retFrameCond ast.Expr) {
if topframe.Current.Fn == nil {
return
}
bp.returnInfo = &returnBreakpointInfo{
retFrameCond: retFrameCond,
fn: topframe.Current.Fn,
frameOffset: topframe.FrameOffset(),
spOffset: topframe.FrameOffset() - int64(bi.Arch.PtrSize()), // must be the value that SP had at the entry point of the function
}
}
func (rbpi *returnBreakpointInfo) Collect(t *Target, thread Thread) []*Variable {
if rbpi == nil {
return nil
}
g, err := GetG(thread)
if err != nil {
return returnInfoError("could not get g", err, thread.ProcessMemory())
}
scope, err := GoroutineScope(t, thread)
if err != nil {
return returnInfoError("could not get scope", err, thread.ProcessMemory())
}
v, err := scope.evalAST(rbpi.retFrameCond)
if err != nil || v.Unreadable != nil || v.Kind != reflect.Bool {
// This condition was evaluated as part of the breakpoint condition
// evaluation, if the errors happen they will be reported as part of the
// condition errors.
return nil
}
if !constant.BoolVal(v.Value) {
// Breakpoint not hit as a return breakpoint.
return nil
}
oldFrameOffset := rbpi.frameOffset + int64(g.stack.hi)
oldSP := uint64(rbpi.spOffset + int64(g.stack.hi))
err = fakeFunctionEntryScope(scope, rbpi.fn, oldFrameOffset, oldSP)
if err != nil {
return returnInfoError("could not read function entry", err, thread.ProcessMemory())
}
vars, err := scope.Locals(0, "")
if err != nil {
return returnInfoError("could not evaluate return variables", err, thread.ProcessMemory())
}
vars = filterVariables(vars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
return vars
}
func returnInfoError(descr string, err error, mem MemoryReadWriter) []*Variable {
v := newConstant(constant.MakeString(fmt.Sprintf("%s: %v", descr, err.Error())), mem)
v.Name = "return value read error"
return []*Variable{v}
}
// LogicalBreakpoint represents a breakpoint set by a user.
// A logical breakpoint can be associated with zero or many physical
// breakpoints.
// Where a physical breakpoint is associated with a specific instruction
// address a logical breakpoint is associated with a source code location.
// Therefore a logical breakpoint can be associated with zero or many
// physical breakpoints.
// It will have one or more physical breakpoints when source code has been
// inlined (or in the case of type parametric code).
// It will have zero physical breakpoints when it represents a deferred
// breakpoint for code that will be loaded in the future.
type LogicalBreakpoint struct {
LogicalID int
Name string
FunctionName string
File string
Line int
enabled bool
Set SetBreakpoint
Tracepoint bool // Tracepoint flag
TraceReturn bool
Goroutine bool // Retrieve goroutine information
Stacktrace int // Number of stack frames to retrieve
Variables []string // Variables to evaluate
LoadArgs *LoadConfig
LoadLocals *LoadConfig
HitCount map[int64]uint64 // Number of times a breakpoint has been reached in a certain goroutine
TotalHitCount uint64 // Number of times a breakpoint has been reached
HitCondPerG bool // Use per goroutine hitcount as HitCond operand, instead of total hitcount
// hitCond: if not nil the breakpoint will be triggered only if the evaluated HitCond returns
// true with the TotalHitCount.
hitCond *struct {
Op token.Token
Val int
}
// cond: if not nil the breakpoint will be triggered only if evaluating Cond returns true
cond ast.Expr
// condSatisfiable is true when 'cond && hitCond' can potentially be true.
condSatisfiable bool
UserData interface{} // Any additional information about the breakpoint
// Name of root function from where tracing needs to be done
RootFuncName string
// depth of tracing
TraceFollowCalls int
}
// SetBreakpoint describes how a breakpoint should be set.
type SetBreakpoint struct {
FunctionName string
File string
Line int
Expr func(*Target) []uint64
ExprString string
PidAddrs []PidAddr
}
type PidAddr struct {
Pid int
Addr uint64
}
// Enabled returns true if the breakpoint is enabled.
func (lbp *LogicalBreakpoint) Enabled() bool {
return lbp.enabled
}
// HitCond returns the hit condition.
func (lbp *LogicalBreakpoint) HitCond() string {
if lbp.hitCond == nil {
return ""
}
return fmt.Sprintf("%s %d", lbp.hitCond.Op.String(), lbp.hitCond.Val)
}
func (lbp *LogicalBreakpoint) Cond() string {
var buf bytes.Buffer
printer.Fprint(&buf, token.NewFileSet(), lbp.cond)
return buf.String()
}
func breakpointConditionSatisfiable(lbp *LogicalBreakpoint) bool {
if lbp.hitCond == nil || lbp.HitCondPerG {
return true
}
switch lbp.hitCond.Op {
case token.EQL, token.LEQ:
return int(lbp.TotalHitCount) < lbp.hitCond.Val
case token.LSS:
return int(lbp.TotalHitCount) < lbp.hitCond.Val-1
}
return true
}
|