File: evalcompile.go

package info (click to toggle)
delve 1.24.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,092 kB
  • sloc: ansic: 111,943; sh: 169; asm: 141; makefile: 43; python: 23
file content (733 lines) | stat: -rw-r--r-- 18,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
package evalop

import (
	"bytes"
	"errors"
	"fmt"
	"go/ast"
	"go/constant"
	"go/parser"
	"go/printer"
	"go/scanner"
	"go/token"
	"strconv"
	"strings"

	"github.com/go-delve/delve/pkg/dwarf/godwarf"
	"github.com/go-delve/delve/pkg/dwarf/reader"
)

var (
	ErrFuncCallNotAllowed   = errors.New("function calls not allowed without using 'call'")
	DebugPinnerFunctionName = "runtime.debugPinnerV1"
)

type compileCtx struct {
	evalLookup
	ops        []Op
	allowCalls bool
	curCall    int
	flags      Flags
	firstCall  bool
}

type evalLookup interface {
	FindTypeExpr(ast.Expr) (godwarf.Type, error)
	HasBuiltin(string) bool
}

// Flags describes flags used to control Compile and CompileAST
type Flags uint8

const (
	CanSet         Flags = 1 << iota // Assignment is allowed
	HasDebugPinner                   // runtime.debugPinner is available
)

// CompileAST compiles the expression t into a list of instructions.
func CompileAST(lookup evalLookup, t ast.Expr, flags Flags) ([]Op, error) {
	ctx := &compileCtx{evalLookup: lookup, allowCalls: true, flags: flags, firstCall: true}
	err := ctx.compileAST(t)
	if err != nil {
		return nil, err
	}

	ctx.compileDebugUnpin()

	err = ctx.depthCheck(1)
	if err != nil {
		return ctx.ops, err
	}
	return ctx.ops, nil
}

// Compile compiles the expression expr into a list of instructions.
// If canSet is true expressions like "x = y" are also accepted.
func Compile(lookup evalLookup, expr string, flags Flags) ([]Op, error) {
	t, err := parser.ParseExpr(expr)
	if err != nil {
		if flags&CanSet != 0 {
			eqOff, isAs := isAssignment(err)
			if isAs {
				return CompileSet(lookup, expr[:eqOff], expr[eqOff+1:], flags)
			}
		}
		return nil, err
	}
	return CompileAST(lookup, t, flags)
}

func isAssignment(err error) (int, bool) {
	el, isScannerErr := err.(scanner.ErrorList)
	if isScannerErr && el[0].Msg == "expected '==', found '='" {
		return el[0].Pos.Offset, true
	}
	return 0, false
}

// CompileSet compiles the expression setting lhexpr to rhexpr into a list of
// instructions.
func CompileSet(lookup evalLookup, lhexpr, rhexpr string, flags Flags) ([]Op, error) {
	lhe, err := parser.ParseExpr(lhexpr)
	if err != nil {
		return nil, err
	}
	rhe, err := parser.ParseExpr(rhexpr)
	if err != nil {
		return nil, err
	}

	ctx := &compileCtx{evalLookup: lookup, allowCalls: true, flags: flags, firstCall: true}
	err = ctx.compileAST(rhe)
	if err != nil {
		return nil, err
	}

	if isStringLiteral(rhe) {
		ctx.compileAllocLiteralString()
	}

	err = ctx.compileAST(lhe)
	if err != nil {
		return nil, err
	}

	ctx.pushOp(&SetValue{lhe: lhe, Rhe: rhe})

	err = ctx.depthCheck(0)
	if err != nil {
		return ctx.ops, err
	}
	return ctx.ops, nil
}

func (ctx *compileCtx) compileAllocLiteralString() {
	jmp := &Jump{When: JumpIfAllocStringChecksFail}
	ctx.pushOp(jmp)

	ctx.compileSpecialCall("runtime.mallocgc", []ast.Expr{
		&ast.BasicLit{Kind: token.INT, Value: "0"},
		&ast.Ident{Name: "nil"},
		&ast.Ident{Name: "false"},
	}, []Op{
		&PushLen{},
		&PushNil{},
		&PushConst{constant.MakeBool(false)},
	}, true)

	ctx.pushOp(&ConvertAllocToString{})
	jmp.Target = len(ctx.ops)
}

func (ctx *compileCtx) compileSpecialCall(fnname string, argAst []ast.Expr, args []Op, doPinning bool) {
	if doPinning {
		ctx.compileGetDebugPinner()
	}

	id := ctx.curCall
	ctx.curCall++
	ctx.pushOp(&CallInjectionStartSpecial{
		id:     id,
		FnName: fnname,
		ArgAst: argAst})
	ctx.pushOp(&CallInjectionSetTarget{id: id})

	for i := range args {
		if args[i] != nil {
			ctx.pushOp(args[i])
		}
		ctx.pushOp(&CallInjectionCopyArg{id: id, ArgNum: i})
	}

	doPinning = doPinning && (ctx.flags&HasDebugPinner != 0)

	ctx.pushOp(&CallInjectionComplete{id: id, DoPinning: doPinning})

	if doPinning {
		ctx.compilePinningLoop(id)
	}
}

func (ctx *compileCtx) compileGetDebugPinner() {
	if ctx.firstCall && ctx.flags&HasDebugPinner != 0 {
		ctx.compileSpecialCall(DebugPinnerFunctionName, []ast.Expr{}, []Op{}, false)
		ctx.pushOp(&SetDebugPinner{})
		ctx.firstCall = false
	}
}

func (ctx *compileCtx) compileDebugUnpin() {
	if !ctx.firstCall && ctx.flags&HasDebugPinner != 0 {
		ctx.compileSpecialCall("runtime.(*Pinner).Unpin", []ast.Expr{
			&ast.Ident{Name: "debugPinner"},
		}, []Op{
			&PushDebugPinner{},
		}, false)
		ctx.pushOp(&Pop{})
		ctx.pushOp(&PushNil{})
		ctx.pushOp(&SetDebugPinner{})
	}
}

func (ctx *compileCtx) pushOp(op Op) {
	ctx.ops = append(ctx.ops, op)
}

// depthCheck validates the list of instructions produced by Compile and
// CompileSet by performing a stack depth check.
// It calculates the depth of the stack at every instruction in ctx.ops and
// checks that they have enough arguments to execute. For instructions that
// can be reached through multiple paths (because of a jump) it checks that
// all paths reach the instruction with the same stack depth.
// Finally it checks that the stack depth after all instructions have
// executed is equal to endDepth.
func (ctx *compileCtx) depthCheck(endDepth int) error {
	depth := make([]int, len(ctx.ops)+1) // depth[i] is the depth of the stack before i-th instruction
	for i := range depth {
		depth[i] = -1
	}
	depth[0] = 0

	var err error
	checkAndSet := func(j, d int) { // sets depth[j] to d after checking that we can
		if depth[j] < 0 {
			depth[j] = d
		}
		if d != depth[j] {
			err = fmt.Errorf("internal debugger error: depth check error at instruction %d: expected depth %d have %d (jump target)\n%s", j, d, depth[j], Listing(depth, ctx.ops))
		}
	}

	debugPinnerSeen := false

	for i, op := range ctx.ops {
		npop, npush := op.depthCheck()
		if depth[i] < npop {
			return fmt.Errorf("internal debugger error: depth check error at instruction %d: expected at least %d have %d\n%s", i, npop, depth[i], Listing(depth, ctx.ops))
		}
		d := depth[i] - npop + npush
		checkAndSet(i+1, d)
		switch op := op.(type) {
		case *Jump:
			checkAndSet(op.Target, d)
		case *CallInjectionStartSpecial:
			debugPinnerSeen = true
		case *CallInjectionComplete:
			if op.DoPinning && !debugPinnerSeen {
				err = fmt.Errorf("internal debugger error: pinning call injection seen before call to %s at instruction %d", DebugPinnerFunctionName, i)
			}
		}
		if err != nil {
			return err
		}
	}

	if depth[len(ctx.ops)] != endDepth {
		return fmt.Errorf("internal debugger error: depth check failed: depth at the end is not %d (got %d)\n%s", depth[len(ctx.ops)], endDepth, Listing(depth, ctx.ops))
	}
	return nil
}

func (ctx *compileCtx) compileAST(t ast.Expr) error {
	switch node := t.(type) {
	case *ast.CallExpr:
		return ctx.compileTypeCastOrFuncCall(node)

	case *ast.Ident:
		return ctx.compileIdent(node)

	case *ast.ParenExpr:
		// otherwise just eval recursively
		return ctx.compileAST(node.X)

	case *ast.SelectorExpr: // <expression>.<identifier>
		switch x := node.X.(type) {
		case *ast.Ident:
			switch {
			case x.Name == "runtime" && node.Sel.Name == "curg":
				ctx.pushOp(&PushCurg{})

			case x.Name == "runtime" && node.Sel.Name == "frameoff":
				ctx.pushOp(&PushFrameoff{})

			case x.Name == "runtime" && node.Sel.Name == "threadid":
				ctx.pushOp(&PushThreadID{})

			case x.Name == "runtime" && node.Sel.Name == "rangeParentOffset":
				ctx.pushOp(&PushRangeParentOffset{})

			default:
				ctx.pushOp(&PushPackageVarOrSelect{Name: x.Name, Sel: node.Sel.Name})
			}

		case *ast.CallExpr:
			ident, ok := x.Fun.(*ast.SelectorExpr)
			if ok {
				f, ok := ident.X.(*ast.Ident)
				if ok && f.Name == "runtime" && ident.Sel.Name == "frame" {
					switch arg := x.Args[0].(type) {
					case *ast.BasicLit:
						fr, err := strconv.ParseInt(arg.Value, 10, 8)
						if err != nil {
							return err
						}
						// Push local onto the stack to be evaluated in the new frame context.
						ctx.pushOp(&PushLocal{Name: node.Sel.Name, Frame: fr})
						return nil
					default:
						return fmt.Errorf("expected integer value for frame, got %v", arg)
					}
				}
			}
			return ctx.compileUnary(node.X, &Select{node.Sel.Name})

		case *ast.BasicLit: // try to accept "package/path".varname syntax for package variables
			s, err := strconv.Unquote(x.Value)
			if err != nil {
				return err
			}
			ctx.pushOp(&PushPackageVarOrSelect{Name: s, Sel: node.Sel.Name, NameIsString: true})

		default:
			return ctx.compileUnary(node.X, &Select{node.Sel.Name})
		}

	case *ast.TypeAssertExpr: // <expression>.(<type>)
		return ctx.compileTypeAssert(node)

	case *ast.IndexExpr:
		return ctx.compileBinary(node.X, node.Index, nil, &Index{node})

	case *ast.SliceExpr:
		if node.Slice3 {
			return errors.New("3-index slice expressions not supported")
		}
		return ctx.compileReslice(node)

	case *ast.StarExpr:
		// pointer dereferencing *<expression>
		return ctx.compileUnary(node.X, &PointerDeref{node})

	case *ast.UnaryExpr:
		// The unary operators we support are +, - and & (note that unary * is parsed as ast.StarExpr)
		switch node.Op {
		case token.AND:
			return ctx.compileUnary(node.X, &AddrOf{node})
		default:
			return ctx.compileUnary(node.X, &Unary{node})
		}

	case *ast.BinaryExpr:
		switch node.Op {
		case token.INC, token.DEC, token.ARROW:
			return fmt.Errorf("operator %s not supported", node.Op.String())
		}
		// short circuits logical operators
		var sop *Jump
		switch node.Op {
		case token.LAND:
			sop = &Jump{When: JumpIfFalse, Node: node.X}
		case token.LOR:
			sop = &Jump{When: JumpIfTrue, Node: node.X}
		}
		err := ctx.compileBinary(node.X, node.Y, sop, &Binary{node})
		if err != nil {
			return err
		}
		if sop != nil {
			sop.Target = len(ctx.ops)
			ctx.pushOp(&BoolToConst{})
		}

	case *ast.BasicLit:
		ctx.pushOp(&PushConst{constant.MakeFromLiteral(node.Value, node.Kind, 0)})

	default:
		return fmt.Errorf("expression %T not implemented", t)
	}
	return nil
}

func (ctx *compileCtx) compileTypeCastOrFuncCall(node *ast.CallExpr) error {
	if len(node.Args) != 1 {
		// Things that have more or less than one argument are always function calls.
		return ctx.compileFunctionCall(node)
	}

	ambiguous := func() error {
		// Ambiguous, could be a function call or a type cast, if node.Fun can be
		// evaluated then try to treat it as a function call, otherwise try the
		// type cast.
		ctx2 := &compileCtx{evalLookup: ctx.evalLookup}
		err0 := ctx2.compileAST(node.Fun)
		if err0 == nil {
			return ctx.compileFunctionCall(node)
		}
		return ctx.compileTypeCast(node, err0)
	}

	fnnode := node.Fun
	for {
		fnnode = removeParen(fnnode)
		n, _ := fnnode.(*ast.StarExpr)
		if n == nil {
			break
		}
		fnnode = n.X
	}

	switch n := fnnode.(type) {
	case *ast.BasicLit:
		// It can only be a ("type string")(x) type cast
		return ctx.compileTypeCast(node, nil)
	case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
		return ctx.compileTypeCast(node, nil)
	case *ast.SelectorExpr:
		if _, isident := n.X.(*ast.Ident); isident {
			if typ, _ := ctx.FindTypeExpr(n); typ != nil {
				return ctx.compileTypeCast(node, nil)
			}
			return ambiguous()
		}
		return ctx.compileFunctionCall(node)
	case *ast.Ident:
		if typ, _ := ctx.FindTypeExpr(n); typ != nil {
			return ctx.compileTypeCast(node, fmt.Errorf("could not find symbol value for %s", n.Name))
		}
		return ctx.compileFunctionCall(node)
	case *ast.IndexExpr:
		// Ambiguous, could be a parametric type
		switch n.X.(type) {
		case *ast.Ident, *ast.SelectorExpr:
			// Do the type-cast first since evaluating node.Fun could be expensive.
			err := ctx.compileTypeCast(node, nil)
			if err == nil || err != reader.ErrTypeNotFound {
				return err
			}
			return ctx.compileFunctionCall(node)
		default:
			return ctx.compileFunctionCall(node)
		}
	case *ast.IndexListExpr:
		return ctx.compileTypeCast(node, nil)
	default:
		// All other expressions must be function calls
		return ctx.compileFunctionCall(node)
	}
}

func (ctx *compileCtx) compileTypeCast(node *ast.CallExpr, ambiguousErr error) error {
	err := ctx.compileAST(node.Args[0])
	if err != nil {
		return err
	}

	fnnode := node.Fun

	// remove all enclosing parenthesis from the type name
	fnnode = removeParen(fnnode)

	targetTypeStr := exprToString(removeParen(node.Fun))
	styp, err := ctx.FindTypeExpr(fnnode)
	if err != nil {
		switch targetTypeStr {
		case "[]byte", "[]uint8":
			styp = godwarf.FakeSliceType(godwarf.FakeBasicType("uint", 8))
		case "[]int32", "[]rune":
			styp = godwarf.FakeSliceType(godwarf.FakeBasicType("int", 32))
		default:
			if ambiguousErr != nil && err == reader.ErrTypeNotFound {
				return fmt.Errorf("could not evaluate function or type %s: %v", exprToString(node.Fun), ambiguousErr)
			}
			return err
		}
	}

	ctx.pushOp(&TypeCast{DwarfType: styp, Node: node})
	return nil
}

func (ctx *compileCtx) compileBuiltinCall(builtin string, args []ast.Expr) error {
	for _, arg := range args {
		err := ctx.compileAST(arg)
		if err != nil {
			return err
		}
	}
	ctx.pushOp(&BuiltinCall{builtin, args})
	return nil
}

func (ctx *compileCtx) compileIdent(node *ast.Ident) error {
	ctx.pushOp(&PushIdent{node.Name})
	return nil
}

func (ctx *compileCtx) compileUnary(expr ast.Expr, op Op) error {
	err := ctx.compileAST(expr)
	if err != nil {
		return err
	}
	ctx.pushOp(op)
	return nil
}

func (ctx *compileCtx) compileTypeAssert(node *ast.TypeAssertExpr) error {
	err := ctx.compileAST(node.X)
	if err != nil {
		return err
	}
	// Accept .(data) as a type assertion that always succeeds, so that users
	// can access the data field of an interface without actually having to
	// type the concrete type.
	if idtyp, isident := node.Type.(*ast.Ident); !isident || idtyp.Name != "data" {
		typ, err := ctx.FindTypeExpr(node.Type)
		if err != nil {
			return err
		}
		ctx.pushOp(&TypeAssert{typ, node})
		return nil
	}
	ctx.pushOp(&TypeAssert{nil, node})
	return nil
}

func (ctx *compileCtx) compileBinary(a, b ast.Expr, sop *Jump, op Op) error {
	err := ctx.compileAST(a)
	if err != nil {
		return err
	}
	if sop != nil {
		ctx.pushOp(sop)
	}
	err = ctx.compileAST(b)
	if err != nil {
		return err
	}
	ctx.pushOp(op)
	return nil
}

func (ctx *compileCtx) compileReslice(node *ast.SliceExpr) error {
	err := ctx.compileAST(node.X)
	if err != nil {
		return err
	}

	trustLen := true
	hasHigh := false
	if node.High != nil {
		hasHigh = true
		err = ctx.compileAST(node.High)
		if err != nil {
			return err
		}
		_, isbasiclit := node.High.(*ast.BasicLit)
		trustLen = trustLen && isbasiclit
	} else {
		trustLen = false
	}

	if node.Low != nil {
		err = ctx.compileAST(node.Low)
		if err != nil {
			return err
		}
		_, isbasiclit := node.Low.(*ast.BasicLit)
		trustLen = trustLen && isbasiclit
	} else {
		ctx.pushOp(&PushConst{constant.MakeInt64(0)})
	}

	ctx.pushOp(&Reslice{Node: node, HasHigh: hasHigh, TrustLen: trustLen})
	return nil
}

func (ctx *compileCtx) compileFunctionCall(node *ast.CallExpr) error {
	if fnnode, ok := node.Fun.(*ast.Ident); ok {
		if ctx.HasBuiltin(fnnode.Name) {
			return ctx.compileBuiltinCall(fnnode.Name, node.Args)
		}
	}
	if !ctx.allowCalls {
		return ErrFuncCallNotAllowed
	}

	id := ctx.curCall
	ctx.curCall++

	if ctx.flags&HasDebugPinner != 0 {
		return ctx.compileFunctionCallWithPinning(node, id)
	}

	return ctx.compileFunctionCallNoPinning(node, id)
}

// compileFunctionCallNoPinning compiles a function call when runtime.debugPinner is
// not available in the target.
func (ctx *compileCtx) compileFunctionCallNoPinning(node *ast.CallExpr, id int) error {
	oldAllowCalls := ctx.allowCalls
	oldOps := ctx.ops
	ctx.allowCalls = false
	err := ctx.compileAST(node.Fun)
	ctx.allowCalls = oldAllowCalls
	hasFunc := false
	if err != nil {
		ctx.ops = oldOps
		if err != ErrFuncCallNotAllowed {
			return err
		}
	} else {
		hasFunc = true
	}
	ctx.pushOp(&CallInjectionStart{HasFunc: hasFunc, id: id, Node: node})

	// CallInjectionStart pushes true on the stack if it needs the function argument re-evaluated
	var jmpif *Jump
	if hasFunc {
		jmpif = &Jump{When: JumpIfFalse, Pop: true}
		ctx.pushOp(jmpif)
	}
	ctx.pushOp(&Pop{})
	err = ctx.compileAST(node.Fun)
	if err != nil {
		return err
	}
	if jmpif != nil {
		jmpif.Target = len(ctx.ops)
	}

	ctx.pushOp(&CallInjectionSetTarget{id: id})

	for i, arg := range node.Args {
		err := ctx.compileAST(arg)
		if err != nil {
			return fmt.Errorf("error evaluating %q as argument %d in function %s: %v", exprToString(arg), i+1, exprToString(node.Fun), err)
		}
		if isStringLiteral(arg) {
			ctx.compileAllocLiteralString()
		}
		ctx.pushOp(&CallInjectionCopyArg{id: id, ArgNum: i, ArgExpr: arg})
	}

	ctx.pushOp(&CallInjectionComplete{id: id})

	return nil
}

// compileFunctionCallWithPinning compiles a function call when runtime.debugPinner
// is available in the target.
func (ctx *compileCtx) compileFunctionCallWithPinning(node *ast.CallExpr, id int) error {
	ctx.compileGetDebugPinner()

	err := ctx.compileAST(node.Fun)
	if err != nil {
		return err
	}

	for i, arg := range node.Args {
		err := ctx.compileAST(arg)
		if isStringLiteral(arg) {
			ctx.compileAllocLiteralString()
		}
		if err != nil {
			return fmt.Errorf("error evaluating %q as argument %d in function %s: %v", exprToString(arg), i+1, exprToString(node.Fun), err)
		}
	}

	ctx.pushOp(&Roll{len(node.Args)})
	ctx.pushOp(&CallInjectionStart{HasFunc: true, id: id, Node: node})
	ctx.pushOp(&Pop{})
	ctx.pushOp(&CallInjectionSetTarget{id: id})

	for i := len(node.Args) - 1; i >= 0; i-- {
		arg := node.Args[i]
		ctx.pushOp(&CallInjectionCopyArg{id: id, ArgNum: i, ArgExpr: arg})
	}

	ctx.pushOp(&CallInjectionComplete{id: id, DoPinning: true})

	ctx.compilePinningLoop(id)

	return nil
}

func (ctx *compileCtx) compilePinningLoop(id int) {
	loopStart := len(ctx.ops)
	jmp := &Jump{When: JumpIfPinningDone}
	ctx.pushOp(jmp)
	ctx.pushOp(&PushPinAddress{})
	ctx.compileSpecialCall("runtime.(*Pinner).Pin", []ast.Expr{
		&ast.Ident{Name: "debugPinner"},
		&ast.Ident{Name: "pinAddress"},
	}, []Op{
		&PushDebugPinner{},
		nil,
	}, false)
	ctx.pushOp(&Pop{})
	ctx.pushOp(&Jump{When: JumpAlways, Target: loopStart})
	jmp.Target = len(ctx.ops)
	ctx.pushOp(&CallInjectionComplete2{id: id})
}

func Listing(depth []int, ops []Op) string {
	if depth == nil {
		depth = make([]int, len(ops)+1)
	}
	buf := new(strings.Builder)
	for i, op := range ops {
		fmt.Fprintf(buf, " %3d  (%2d->%2d) %#v\n", i, depth[i], depth[i+1], op)
	}
	return buf.String()
}

func isStringLiteral(expr ast.Expr) bool {
	switch expr := expr.(type) {
	case *ast.BasicLit:
		return expr.Kind == token.STRING
	case *ast.BinaryExpr:
		if expr.Op == token.ADD {
			return isStringLiteral(expr.X) && isStringLiteral(expr.Y)
		}
	case *ast.ParenExpr:
		return isStringLiteral(expr.X)
	}
	return false
}

func removeParen(n ast.Expr) ast.Expr {
	for {
		p, ok := n.(*ast.ParenExpr)
		if !ok {
			break
		}
		n = p.X
	}
	return n
}

func exprToString(t ast.Expr) string {
	var buf bytes.Buffer
	printer.Fprint(&buf, token.NewFileSet(), t)
	return buf.String()
}