1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
|
package proc
import (
"bytes"
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/constant"
"go/token"
"math"
"math/bits"
"reflect"
"sort"
"strconv"
"strings"
"time"
"unsafe"
"github.com/go-delve/delve/pkg/dwarf/godwarf"
"github.com/go-delve/delve/pkg/dwarf/op"
"github.com/go-delve/delve/pkg/goversion"
"github.com/go-delve/delve/pkg/logflags"
)
const (
maxErrCount = 3 // Max number of read errors to accept while evaluating slices, arrays and structs
maxArrayStridePrefetch = 1024 // Maximum size of array stride for which we will prefetch the array contents
// hashTophashEmptyZero is used by map reading code, indicates an empty cell
hashTophashEmptyZero = 0 // +rtype emptyRest
// hashTophashEmptyOne is used by map reading code, indicates an empty cell in Go 1.12 and later
hashTophashEmptyOne = 1 // +rtype emptyOne
// hashMinTopHashGo111 used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.11
hashMinTopHashGo111 = 4 // +rtype minTopHash
// hashMinTopHashGo112 is used by map reading code, indicates minimum value of tophash that isn't empty or evacuated, in Go1.12
hashMinTopHashGo112 = 5 // +rtype minTopHash
maxFramePrefetchSize = 1 * 1024 * 1024 // Maximum prefetch size for a stack frame
maxMapBucketsFactor = 100 // Maximum numbers of map buckets to read for every requested map entry when loading variables through (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments.
maxGoroutineUserCurrentDepth = 30 // Maximum depth used by (*G).UserCurrent to search its location
)
type floatSpecial uint8
const (
// FloatIsNormal means the value is a normal float.
FloatIsNormal floatSpecial = iota
// FloatIsNaN means the float is a special NaN value.
FloatIsNaN
// FloatIsPosInf means the float is a special positive infinity value.
FloatIsPosInf
// FloatIsNegInf means the float is a special negative infinity value.
FloatIsNegInf
)
type variableFlags uint16
const (
// VariableEscaped is set for local variables that escaped to the heap
//
// The compiler performs escape analysis on local variables, the variables
// that may outlive the stack frame are allocated on the heap instead and
// only the address is recorded on the stack. These variables will be
// marked with this flag.
VariableEscaped variableFlags = (1 << iota)
// VariableShadowed is set for local variables that are shadowed by a
// variable with the same name in another scope
VariableShadowed
// VariableConstant means this variable is a constant value
VariableConstant
// VariableArgument means this variable is a function argument
VariableArgument
// VariableReturnArgument means this variable is a function return value
VariableReturnArgument
// VariableFakeAddress means the address of this variable is either fake
// (i.e. the variable is partially or completely stored in a CPU register
// and doesn't have a real address) or possibly no longer available (because
// the variable is the return value of a function call and allocated on a
// frame that no longer exists)
VariableFakeAddress
// VariableCPtr means the variable is a C pointer
VariableCPtr
// VariableCPURegister means this variable is a CPU register.
VariableCPURegister
// variableTrustLen means that when this variable is loaded its length
// should be trusted and used instead of MaxArrayValues
variableTrustLen
variableSaved
)
// Variable represents a variable. It contains the address, name,
// type and other information parsed from both the Dwarf information
// and the memory of the debugged process.
// If OnlyAddr is true, the variables value has not been loaded.
type Variable struct {
Addr uint64
OnlyAddr bool
Name string
DwarfType godwarf.Type
RealType godwarf.Type
Kind reflect.Kind
mem MemoryReadWriter
bi *BinaryInfo
Value constant.Value
FloatSpecial floatSpecial
reg *op.DwarfRegister // contains the value of this variable if VariableCPURegister flag is set and loaded is false
Len int64
Cap int64
Flags variableFlags
// Base address of arrays, Base address of the backing array for slices (0 for nil slices)
// Base address of the backing byte array for strings
// address of the struct backing chan and map variables
// address of the function entry point for function variables (0 for nil function pointers)
Base uint64
stride int64
fieldType godwarf.Type
// closureAddr is the closure address for function variables (0 for non-closures)
closureAddr uint64
// number of elements to skip when loading a map
mapSkip int
// Children lists the variables sub-variables. What constitutes a child
// depends on the variable's type. For pointers, there's one child
// representing the pointed-to variable.
Children []Variable
loaded bool
Unreadable error
LocationExpr *locationExpr // location expression
DeclLine int64 // line number of this variable's declaration
}
// LoadConfig controls how variables are loaded from the targets memory.
type LoadConfig struct {
// FollowPointers requests pointers to be automatically dereferenced.
FollowPointers bool
// MaxVariableRecurse is how far to recurse when evaluating nested types.
MaxVariableRecurse int
// MaxStringLen is the maximum number of bytes read from a string
MaxStringLen int
// MaxArrayValues is the maximum number of elements read from an array, a slice or a map.
MaxArrayValues int
// MaxStructFields is the maximum number of fields read from a struct, -1 will read all fields.
MaxStructFields int
// MaxMapBuckets is the maximum number of map buckets to read before giving up.
// A value of 0 will read as many buckets as necessary until the entire map
// is read or MaxArrayValues is reached.
//
// Loading a map is an operation that issues O(num_buckets) operations.
// Normally the number of buckets is proportional to the number of elements
// in the map, since the runtime tries to keep the load factor of maps
// between 40% and 80%.
//
// It is possible, however, to create very sparse maps either by:
// a) adding lots of entries to a map and then deleting most of them, or
// b) using the make(mapType, N) expression with a very large N
//
// When this happens delve will have to scan many empty buckets to find the
// few entries in the map.
// MaxMapBuckets can be set to avoid annoying slowdowns␣while reading
// very sparse maps.
//
// Since there is no good way for a user of delve to specify the value of
// MaxMapBuckets, this field is not actually exposed through the API.
// Instead (*EvalScope).LocalVariables and (*EvalScope).FunctionArguments
// set this field automatically to MaxArrayValues * maxMapBucketsFactor.
// Every other invocation uses the default value of 0, obtaining the old behavior.
// In practice this means that debuggers using the ListLocalVars or
// ListFunctionArgs API will not experience a massive slowdown when a very
// sparse map is in scope, but evaluating a single variable will still work
// correctly, even if the variable in question is a very sparse map.
MaxMapBuckets int
}
var loadSingleValue = LoadConfig{false, 0, 64, 0, 0, 0}
var loadFullValue = LoadConfig{true, 1, 64, 64, -1, 0}
var loadFullValueLongerStrings = LoadConfig{true, 1, 1024 * 1024, 64, -1, 0}
// G status, from: src/runtime/runtime2.go
const (
Gidle uint64 = iota // 0
Grunnable // 1 runnable and on a run queue
Grunning // 2
Gsyscall // 3
Gwaiting // 4
GmoribundUnused // 5 currently unused, but hardcoded in gdb scripts
Gdead // 6
Genqueue // 7 Only the Gscanenqueue is used.
Gcopystack // 8 in this state when newstack is moving the stack
)
// G represents a runtime G (goroutine) structure (at least the
// fields that Delve is interested in).
type G struct {
ID int64 // Goroutine ID
PC uint64 // PC of goroutine when it was parked.
SP uint64 // SP of goroutine when it was parked.
BP uint64 // BP of goroutine when it was parked (go >= 1.7).
LR uint64 // LR of goroutine when it was parked.
GoPC uint64 // PC of 'go' statement that created this goroutine.
StartPC uint64 // PC of the first function run on this goroutine.
Status uint64
stack stack // value of stack
WaitSince int64
WaitReason int64
SystemStack bool // SystemStack is true if this goroutine is currently executing on a system stack.
// Information on goroutine location
CurrentLoc Location
// Thread that this goroutine is currently allocated to
Thread Thread
variable *Variable
Unreadable error // could not read the G struct
labels *map[string]string // G's pprof labels, computed on demand in Labels() method
}
// stack represents a stack span in the target process.
type stack struct {
hi, lo uint64
}
// GetG returns information on the G (goroutine) that is executing on this thread.
//
// The G structure for a thread is stored in thread local storage. Here we simply
// calculate the address and read and parse the G struct.
//
// We cannot simply use the allg linked list in order to find the M that represents
// the given OS thread and follow its G pointer because on Darwin mach ports are not
// universal, so our port for this thread would not map to the `id` attribute of the M
// structure. Also, when linked against libc, Go prefers the libc version of clone as
// opposed to the runtime version. This has the consequence of not setting M.id for
// any thread, regardless of OS.
//
// In order to get around all this craziness, we read the address of the G structure for
// the current thread from the thread local storage area.
func GetG(thread Thread) (*G, error) {
if thread.Common().g != nil {
return thread.Common().g, nil
}
if loc, _ := thread.Location(); loc != nil && loc.Fn != nil && loc.Fn.Name == "runtime.clone" {
// When threads are executing runtime.clone the value of TLS is unreliable.
return nil, nil
}
gaddr, err := getGVariable(thread)
if err != nil {
return nil, err
}
g, err := gaddr.parseG()
if err != nil {
return nil, err
}
if g.ID == 0 {
// The runtime uses a special goroutine with ID == 0 to mark that the
// current goroutine is executing on the system stack (sometimes also
// referred to as the g0 stack or scheduler stack, I'm not sure if there's
// actually any difference between those).
// For our purposes it's better if we always return the real goroutine
// since the rest of the code assumes the goroutine ID is univocal.
// The real 'current goroutine' is stored in g0.m.curg
mvar, err := g.variable.structMember("m")
if err != nil {
return nil, err
}
curgvar, err := mvar.structMember("curg")
if err != nil {
return nil, err
}
g, err = curgvar.parseG()
if err != nil {
if _, ok := err.(ErrNoGoroutine); ok {
err = ErrNoGoroutine{thread.ThreadID()}
}
return nil, err
}
g.SystemStack = true
}
g.Thread = thread
if loc, err := thread.Location(); err == nil {
g.CurrentLoc = *loc
}
thread.Common().g = g
return g, nil
}
// GoroutinesInfo searches for goroutines starting at index 'start', and
// returns an array of up to 'count' (or all found elements, if 'count' is 0)
// G structures representing the information Delve care about from the internal
// runtime G structure.
// GoroutinesInfo also returns the next index to be used as 'start' argument
// while scanning for all available goroutines, or -1 if there was an error
// or if the index already reached the last possible value.
func GoroutinesInfo(dbp *Target, start, count int) ([]*G, int, error) {
if _, err := dbp.Valid(); err != nil {
return nil, -1, err
}
if dbp.gcache.allGCache != nil {
// We can't use the cached array to fulfill a subrange request
if start == 0 && (count == 0 || count >= len(dbp.gcache.allGCache)) {
return dbp.gcache.allGCache, -1, nil
}
}
var (
threadg = map[int64]*G{}
allg []*G
)
threads := dbp.ThreadList()
for _, th := range threads {
g, _ := GetG(th)
if g != nil {
threadg[g.ID] = g
}
}
allgptr, allglen, err := dbp.gcache.getRuntimeAllg(dbp.BinInfo(), dbp.Memory())
if err != nil {
return nil, -1, err
}
for i := uint64(start); i < allglen; i++ {
if count != 0 && len(allg) >= count {
return allg, int(i), nil
}
gvar, err := newGVariable(dbp.CurrentThread(), allgptr+(i*uint64(dbp.BinInfo().Arch.PtrSize())), true)
if err != nil {
allg = append(allg, &G{Unreadable: err})
continue
}
g, err := gvar.parseG()
if err != nil {
allg = append(allg, &G{Unreadable: err})
continue
}
if thg, allocated := threadg[g.ID]; allocated {
loc, err := thg.Thread.Location()
if err != nil {
return nil, -1, err
}
g.Thread = thg.Thread
// Prefer actual thread location information.
g.CurrentLoc = *loc
g.SystemStack = thg.SystemStack
}
if g.Status != Gdead {
allg = append(allg, g)
}
dbp.gcache.addGoroutine(g)
}
if start == 0 {
dbp.gcache.allGCache = allg
}
return allg, -1, nil
}
// FindGoroutine returns a G struct representing the goroutine
// specified by `gid`.
func FindGoroutine(dbp *Target, gid int64) (*G, error) {
if selg := dbp.SelectedGoroutine(); (gid == -1) || (selg != nil && selg.ID == gid) || (selg == nil && gid == 0) {
// Return the currently selected goroutine in the following circumstances:
//
// 1. if the caller asks for gid == -1 (because that's what a goroutine ID of -1 means in our API).
// 2. if gid == selg.ID.
// this serves two purposes: (a) it's an optimizations that allows us
// to avoid reading any other goroutine and, more importantly, (b) we
// could be reading an incorrect value for the goroutine ID of a thread.
// This condition usually happens when a goroutine calls runtime.clone
// and for a short period of time two threads will appear to be running
// the same goroutine.
// 3. if the caller asks for gid == 0 and the selected goroutine is
// either 0 or nil.
// Goroutine 0 is special, it either means we have no current goroutine
// (for example, running C code), or that we are running on a special
// stack (system stack, signal handling stack) and we didn't properly
// detect it.
// Since there could be multiple goroutines '0' running simultaneously
// if the user requests it return the one that's already selected or
// nil if there isn't a selected goroutine.
return selg, nil
}
if gid == 0 {
return nil, fmt.Errorf("unknown goroutine %d", gid)
}
if g := dbp.gcache.partialGCache[gid]; g != nil {
return g, nil
}
// Calling GoroutinesInfo could be slow if there are many goroutines
// running, check if a running goroutine has been requested first.
for _, thread := range dbp.ThreadList() {
g, _ := GetG(thread)
if g != nil && g.ID == gid {
return g, nil
}
}
const goroutinesInfoLimit = 10
nextg := 0
for nextg >= 0 {
var gs []*G
var err error
gs, nextg, err = GoroutinesInfo(dbp, nextg, goroutinesInfoLimit)
if err != nil {
return nil, err
}
for i := range gs {
if gs[i].ID == gid {
if gs[i].Unreadable != nil {
return nil, gs[i].Unreadable
}
return gs[i], nil
}
}
}
return nil, fmt.Errorf("unknown goroutine %d", gid)
}
func getGVariable(thread Thread) (*Variable, error) {
regs, err := thread.Registers()
if err != nil {
return nil, err
}
gaddr, hasgaddr := regs.GAddr()
if !hasgaddr {
bi := thread.BinInfo()
offset, err := bi.GStructOffset(thread.ProcessMemory())
if err != nil {
return nil, err
}
gaddr, err = readUintRaw(thread.ProcessMemory(), regs.TLS()+offset, int64(bi.Arch.PtrSize()))
if err != nil {
return nil, err
}
}
return newGVariable(thread, gaddr, thread.BinInfo().Arch.DerefTLS())
}
func newGVariable(thread Thread, gaddr uint64, deref bool) (*Variable, error) {
typ, err := thread.BinInfo().findType("runtime.g")
if err != nil {
return nil, err
}
if deref {
typ = &godwarf.PtrType{
CommonType: godwarf.CommonType{
ByteSize: int64(thread.BinInfo().Arch.PtrSize()),
Name: "",
ReflectKind: reflect.Ptr,
Offset: 0,
},
Type: typ,
}
}
return newVariableFromThread(thread, "", gaddr, typ), nil
}
// Defer returns the top-most defer of the goroutine.
func (g *G) Defer() *Defer {
if g.variable.Unreadable != nil {
return nil
}
dvar, _ := g.variable.structMember("_defer")
if dvar == nil {
return nil
}
dvar = dvar.maybeDereference()
if dvar.Addr == 0 {
return nil
}
d := &Defer{variable: dvar}
d.load(true)
return d
}
// UserCurrent returns the location the users code is at,
// or was at before entering a runtime function.
func (g *G) UserCurrent() Location {
it, err := goroutineStackIterator(nil, g, 0)
if err != nil {
return g.CurrentLoc
}
for count := 0; it.Next() && count < maxGoroutineUserCurrentDepth; count++ {
frame := it.Frame()
if frame.Call.Fn != nil {
name := frame.Call.Fn.Name
if strings.Contains(name, ".") && (!strings.HasPrefix(name, "runtime.") || frame.Call.Fn.exportedRuntime()) && !strings.HasPrefix(name, "internal/") && !strings.HasPrefix(name, "runtime/internal") && !strings.HasPrefix(name, "iter.") {
return frame.Call
}
}
}
return g.CurrentLoc
}
// Go returns the location of the 'go' statement
// that spawned this goroutine.
func (g *G) Go() Location {
pc := g.GoPC
if fn := g.variable.bi.PCToFunc(pc); fn != nil {
// Backup to CALL instruction.
// Mimics runtime/traceback.go:677.
if g.GoPC > fn.Entry {
pc--
}
}
f, l, fn := g.variable.bi.PCToLine(pc)
return Location{PC: g.GoPC, File: f, Line: l, Fn: fn}
}
// StartLoc returns the starting location of the goroutine.
func (g *G) StartLoc(tgt *Target) Location {
fn := g.variable.bi.PCToFunc(g.StartPC)
fn = tgt.dwrapUnwrap(fn)
if fn == nil {
return Location{PC: g.StartPC}
}
f, l := tgt.BinInfo().EntryLineForFunc(fn)
return Location{PC: fn.Entry, File: f, Line: l, Fn: fn}
}
// System returns true if g is a system goroutine. See isSystemGoroutine in
// $GOROOT/src/runtime/traceback.go.
func (g *G) System(tgt *Target) bool {
loc := g.StartLoc(tgt)
if loc.Fn == nil {
return false
}
switch loc.Fn.Name {
case "runtime.main", "runtime.handleAsyncEvent":
return false
}
return strings.HasPrefix(loc.Fn.Name, "runtime.")
}
func (g *G) Labels() map[string]string {
if g.labels != nil {
return *g.labels
}
var labels map[string]string
if labelsVar := g.variable.loadFieldNamed("labels"); labelsVar != nil && len(labelsVar.Children) == 1 {
if address := labelsVar.Children[0]; address.Addr != 0 {
labelMapType, _ := g.variable.bi.findType("runtime/pprof.labelMap")
if labelMapType != nil {
labelMap := newVariable("", address.Addr, labelMapType, g.variable.bi, g.variable.mem)
labels = map[string]string{}
switch labelMap.Kind {
case reflect.Map:
labelMap.loadValue(loadFullValue)
for i := range labelMap.Children {
if i%2 == 0 {
k := labelMap.Children[i]
v := labelMap.Children[i+1]
labels[constant.StringVal(k.Value)] = constant.StringVal(v.Value)
}
}
case reflect.Struct:
labelMap, _ = labelMap.structMember("list")
if labelMap != nil {
for i := int64(0); i < labelMap.Len; i++ {
v, err := labelMap.sliceAccess(int(i))
if err != nil {
break
}
v.loadValue(loadFullValue)
if len(v.Children) == 2 {
labels[constant.StringVal(v.Children[0].Value)] = constant.StringVal(v.Children[1].Value)
}
}
}
}
}
}
}
g.labels = &labels
return *g.labels
}
type Ancestor struct {
ID int64 // Goroutine ID
Unreadable error
pcsVar *Variable
}
// IsNilErr is returned when a variable is nil.
type IsNilErr struct {
name string
}
func (err *IsNilErr) Error() string {
return fmt.Sprintf("%s is nil", err.name)
}
func globalScope(tgt *Target, bi *BinaryInfo, image *Image, mem MemoryReadWriter) *EvalScope {
return &EvalScope{Location: Location{}, Regs: op.DwarfRegisters{StaticBase: image.StaticBase}, Mem: mem, g: nil, BinInfo: bi, target: tgt, frameOffset: 0}
}
func newVariableFromThread(t Thread, name string, addr uint64, dwarfType godwarf.Type) *Variable {
return newVariable(name, addr, dwarfType, t.BinInfo(), t.ProcessMemory())
}
func (v *Variable) newVariable(name string, addr uint64, dwarfType godwarf.Type, mem MemoryReadWriter) *Variable {
return newVariable(name, addr, dwarfType, v.bi, mem)
}
func newVariable(name string, addr uint64, dwarfType godwarf.Type, bi *BinaryInfo, mem MemoryReadWriter) *Variable {
if styp, isstruct := dwarfType.(*godwarf.StructType); isstruct && !strings.Contains(styp.Name, "<") && !strings.Contains(styp.Name, "{") {
// For named structs the compiler will emit a DW_TAG_structure_type entry
// and a DW_TAG_typedef entry.
//
// Normally variables refer to the typedef entry but sometimes global
// variables will refer to the struct entry incorrectly.
// Also the runtime type offset resolution (runtimeTypeToDIE) will return
// the struct entry directly.
//
// In both cases we prefer to have a typedef type for consistency's sake.
//
// So we wrap all struct types into a fake typedef type except for:
// a. types not defined by go
// b. anonymous struct types (they contain the '{' character)
// c. Go internal struct types used to describe maps (they contain the '<'
// character).
cu := bi.Images[dwarfType.Common().Index].findCompileUnitForOffset(dwarfType.Common().Offset)
if cu != nil && cu.isgo {
dwarfType = &godwarf.TypedefType{
CommonType: *(dwarfType.Common()),
Type: dwarfType,
}
}
}
v := &Variable{
Name: name,
Addr: addr,
DwarfType: dwarfType,
mem: mem,
bi: bi,
}
v.RealType = resolveTypedef(v.DwarfType)
switch t := v.RealType.(type) {
case *godwarf.PtrType:
v.Kind = reflect.Ptr
if _, isvoid := t.Type.(*godwarf.VoidType); isvoid {
v.Kind = reflect.UnsafePointer
} else if isCgoType(bi, t) {
v.Flags |= VariableCPtr
v.fieldType = t.Type
v.stride = alignAddr(v.fieldType.Size(), v.fieldType.Align())
v.Len = 0
if isCgoCharPtr(bi, t) {
v.Kind = reflect.String
}
if v.Addr != 0 {
v.Base, v.Unreadable = readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
}
}
case *godwarf.ChanType:
v.Kind = reflect.Chan
if v.Addr != 0 {
v.loadChanInfo()
}
case *godwarf.MapType:
v.Kind = reflect.Map
case *godwarf.StringType:
v.Kind = reflect.String
v.stride = 1
v.fieldType = &godwarf.UintType{BasicType: godwarf.BasicType{CommonType: godwarf.CommonType{ByteSize: 1, Name: "byte", ReflectKind: reflect.Uint8}, BitSize: 8, BitOffset: 0}}
if v.Addr != 0 {
v.Base, v.Len, v.Unreadable = readStringInfo(v.mem, v.bi.Arch, v.Addr, t)
}
case *godwarf.SliceType:
v.Kind = reflect.Slice
if v.Addr != 0 {
v.loadSliceInfo(t)
}
case *godwarf.InterfaceType:
v.Kind = reflect.Interface
case *godwarf.StructType:
v.Kind = reflect.Struct
case *godwarf.ArrayType:
v.Kind = reflect.Array
v.Base = v.Addr
v.Len = t.Count
v.Cap = t.Count
v.fieldType = t.Type
v.stride = 0
if t.Count > 0 {
v.stride = t.ByteSize / t.Count
}
case *godwarf.ComplexType:
switch t.ByteSize {
case 8:
v.Kind = reflect.Complex64
case 16:
v.Kind = reflect.Complex128
}
case *godwarf.IntType:
v.Kind = reflect.Int
case *godwarf.CharType:
// Rest of the code assumes that Kind == reflect.Int implies RealType ==
// godwarf.IntType.
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
v.Kind = reflect.Int
case *godwarf.UcharType:
v.RealType = &godwarf.IntType{BasicType: t.BasicType}
v.Kind = reflect.Int
case *godwarf.UintType:
v.Kind = reflect.Uint
case *godwarf.FloatType:
switch t.ByteSize {
case 4:
v.Kind = reflect.Float32
case 8:
v.Kind = reflect.Float64
}
case *godwarf.BoolType:
v.Kind = reflect.Bool
case *godwarf.FuncType:
v.Kind = reflect.Func
case *godwarf.VoidType:
v.Kind = reflect.Invalid
case *godwarf.UnspecifiedType:
v.Kind = reflect.Invalid
default:
v.Unreadable = fmt.Errorf("unknown type: %T", t)
}
return v
}
func resolveTypedef(typ godwarf.Type) godwarf.Type {
for {
switch tt := typ.(type) {
case *godwarf.TypedefType:
typ = tt.Type
case *godwarf.QualType:
typ = tt.Type
default:
return typ
}
}
}
var constantMaxInt64 = constant.MakeInt64(1<<63 - 1)
func newConstant(val constant.Value, mem MemoryReadWriter) *Variable {
v := &Variable{Value: val, mem: mem, loaded: true}
switch val.Kind() {
case constant.Int:
v.Kind = reflect.Int
if constant.Sign(val) >= 0 && constant.Compare(val, token.GTR, constantMaxInt64) {
v.Kind = reflect.Uint64
}
case constant.Float:
v.Kind = reflect.Float64
case constant.Bool:
v.Kind = reflect.Bool
case constant.Complex:
v.Kind = reflect.Complex128
case constant.String:
v.Kind = reflect.String
v.Len = int64(len(constant.StringVal(val)))
}
v.Flags |= VariableConstant
return v
}
var nilVariable = &Variable{
Name: "nil",
Addr: 0,
Base: 0,
Kind: reflect.Ptr,
Children: []Variable{{Addr: 0, OnlyAddr: true}},
}
func (v *Variable) clone() *Variable {
r := *v
return &r
}
// TypeString returns the string representation
// of the type of this variable.
func (v *Variable) TypeString() string {
if v == nilVariable {
return "nil"
}
if v.DwarfType == nil {
return v.Kind.String()
}
if v.DwarfType.Common().Name != "" {
return v.DwarfType.Common().Name
}
r := v.DwarfType.String()
if r == "*void" {
cu := v.bi.Images[v.DwarfType.Common().Index].findCompileUnitForOffset(v.DwarfType.Common().Offset)
if cu != nil && cu.isgo {
r = "unsafe.Pointer"
}
}
return r
}
func (v *Variable) toField(field *godwarf.StructField) (*Variable, error) {
if v.Unreadable != nil {
return v.clone(), nil
}
if v.Addr == 0 {
return nil, &IsNilErr{v.Name}
}
name := ""
if v.Name != "" {
parts := strings.Split(field.Name, ".")
if len(parts) > 1 {
name = fmt.Sprintf("%s.%s", v.Name, parts[1])
} else {
name = fmt.Sprintf("%s.%s", v.Name, field.Name)
}
}
return v.newVariable(name, uint64(int64(v.Addr)+field.ByteOffset), field.Type, v.mem), nil
}
// ErrNoGoroutine returned when a G could not be found
// for a specific thread.
type ErrNoGoroutine struct {
tid int
}
func (ng ErrNoGoroutine) Error() string {
return fmt.Sprintf("no G executing on thread %d", ng.tid)
}
var ErrUnreadableG = errors.New("could not read G struct")
func (v *Variable) parseG() (*G, error) {
mem := v.mem
gaddr := v.Addr
_, deref := v.RealType.(*godwarf.PtrType)
if deref {
var err error
gaddr, err = readUintRaw(mem, gaddr, int64(v.bi.Arch.PtrSize()))
if err != nil {
return nil, fmt.Errorf("error derefing *G %s", err)
}
}
if gaddr == 0 {
id := 0
if thread, ok := mem.(Thread); ok {
id = thread.ThreadID()
}
return nil, ErrNoGoroutine{tid: id}
}
isptr := func(t godwarf.Type) bool {
_, ok := t.(*godwarf.PtrType)
return ok
}
for isptr(v.RealType) {
v = v.maybeDereference() // +rtype g
}
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
schedVar := v.loadFieldNamed("sched") // +rtype gobuf
if schedVar == nil {
return nil, ErrUnreadableG
}
pc, _ := constant.Int64Val(schedVar.fieldVariable("pc").Value) // +rtype uintptr
sp, _ := constant.Int64Val(schedVar.fieldVariable("sp").Value) // +rtype uintptr
var bp, lr int64
if bpvar := schedVar.fieldVariable("bp"); /* +rtype -opt uintptr */ bpvar != nil && bpvar.Value != nil {
bp, _ = constant.Int64Val(bpvar.Value)
}
if lrvar := schedVar.fieldVariable("lr"); /* +rtype -opt uintptr */ lrvar != nil && lrvar.Value != nil {
lr, _ = constant.Int64Val(lrvar.Value)
}
unreadable := false
loadInt64Maybe := func(name string) int64 {
vv := v.loadFieldNamed(name)
if vv == nil {
unreadable = true
return 0
}
n, _ := constant.Int64Val(vv.Value)
return n
}
loadUint64Maybe := func(name string) uint64 {
vv := v.loadFieldNamed(name)
if vv == nil {
unreadable = true
return 0
}
n, _ := constant.Uint64Val(vv.Value)
return n
}
id := loadUint64Maybe("goid") // +rtype int64|uint64
gopc := loadInt64Maybe("gopc") // +rtype uintptr
startpc := loadInt64Maybe("startpc") // +rtype uintptr
waitSince := loadInt64Maybe("waitsince") // +rtype int64
waitReason := int64(0)
if producer := v.bi.Producer(); producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
waitReason = loadInt64Maybe("waitreason") // +rtype -opt waitReason
}
var stackhi, stacklo uint64
if stackVar := v.loadFieldNamed("stack"); /* +rtype stack */ stackVar != nil {
if stackhiVar := stackVar.fieldVariable("hi"); /* +rtype uintptr */ stackhiVar != nil && stackhiVar.Value != nil {
stackhi, _ = constant.Uint64Val(stackhiVar.Value)
} else {
unreadable = true
}
if stackloVar := stackVar.fieldVariable("lo"); /* +rtype uintptr */ stackloVar != nil && stackloVar.Value != nil {
stacklo, _ = constant.Uint64Val(stackloVar.Value)
} else {
unreadable = true
}
}
status := uint64(0)
if atomicStatus := v.loadFieldNamed("atomicstatus"); /* +rtype uint32|runtime/internal/atomic.Uint32|internal/runtime/atomic.Uint32 */ atomicStatus != nil {
if constant.Val(atomicStatus.Value) != nil {
status, _ = constant.Uint64Val(atomicStatus.Value)
} else {
atomicStatus := atomicStatus // +rtype runtime/internal/atomic.Uint32|internal/runtime/atomic.Uint32
vv := atomicStatus.fieldVariable("value") // +rtype uint32
if vv == nil {
unreadable = true
} else {
status, _ = constant.Uint64Val(vv.Value)
}
}
} else {
unreadable = true
}
if unreadable {
return nil, ErrUnreadableG
}
f, l, fn := v.bi.PCToLine(uint64(pc))
v.Name = "runtime.curg"
g := &G{
ID: int64(id),
GoPC: uint64(gopc),
StartPC: uint64(startpc),
PC: uint64(pc),
SP: uint64(sp),
BP: uint64(bp),
LR: uint64(lr),
Status: status,
WaitSince: waitSince,
WaitReason: waitReason,
CurrentLoc: Location{PC: uint64(pc), File: f, Line: l, Fn: fn},
variable: v,
stack: stack{hi: stackhi, lo: stacklo},
}
return g, nil
}
func (v *Variable) loadFieldNamed(name string) *Variable {
v, err := v.structMember(name)
if err != nil {
return nil
}
v.loadValue(loadFullValue)
if v.Unreadable != nil {
return nil
}
return v
}
func (v *Variable) fieldVariable(name string) *Variable {
if !v.loaded {
panic("fieldVariable called on a variable that wasn't loaded")
}
for i := range v.Children {
if child := &v.Children[i]; child.Name == name {
return child
}
}
return nil
}
var errTracebackAncestorsDisabled = errors.New("tracebackancestors is disabled")
// Ancestors returns the list of ancestors for g.
func Ancestors(p *Target, g *G, n int) ([]Ancestor, error) {
scope := globalScope(p, p.BinInfo(), p.BinInfo().Images[0], p.Memory())
tbav, err := scope.EvalExpression("runtime.debug.tracebackancestors", loadSingleValue)
if err == nil && tbav.Unreadable == nil && tbav.Kind == reflect.Int {
tba, _ := constant.Int64Val(tbav.Value)
if tba == 0 {
return nil, errTracebackAncestorsDisabled
}
}
av, err := g.variable.structMember("ancestors")
if err != nil {
return nil, err
}
av = av.maybeDereference()
av.loadValue(LoadConfig{MaxArrayValues: n, MaxVariableRecurse: 1, MaxStructFields: -1})
if av.Unreadable != nil {
return nil, err
}
if av.Addr == 0 {
// no ancestors
return nil, nil
}
r := make([]Ancestor, len(av.Children))
for i := range av.Children {
if av.Children[i].Unreadable != nil {
r[i].Unreadable = av.Children[i].Unreadable
continue
}
goidv := av.Children[i].fieldVariable("goid")
if goidv.Unreadable != nil {
r[i].Unreadable = goidv.Unreadable
continue
}
r[i].ID, _ = constant.Int64Val(goidv.Value)
pcsVar := av.Children[i].fieldVariable("pcs")
if pcsVar.Unreadable != nil {
r[i].Unreadable = pcsVar.Unreadable
}
pcsVar.loaded = false
pcsVar.Children = pcsVar.Children[:0]
r[i].pcsVar = pcsVar
}
return r, nil
}
// Stack returns the stack trace of ancestor 'a' as saved by the runtime.
func (a *Ancestor) Stack(n int) ([]Stackframe, error) {
if a.Unreadable != nil {
return nil, a.Unreadable
}
pcsVar := a.pcsVar.clone()
pcsVar.loadValue(LoadConfig{MaxArrayValues: n})
if pcsVar.Unreadable != nil {
return nil, pcsVar.Unreadable
}
r := make([]Stackframe, len(pcsVar.Children))
for i := range pcsVar.Children {
if pcsVar.Children[i].Unreadable != nil {
r[i] = Stackframe{Err: pcsVar.Children[i].Unreadable}
continue
}
if pcsVar.Children[i].Kind != reflect.Uint {
return nil, fmt.Errorf("wrong type for pcs item %d: %v", i, pcsVar.Children[i].Kind)
}
pc, _ := constant.Int64Val(pcsVar.Children[i].Value)
fn := a.pcsVar.bi.PCToFunc(uint64(pc))
if fn == nil {
loc := Location{PC: uint64(pc)}
r[i] = Stackframe{Current: loc, Call: loc}
continue
}
pc2 := uint64(pc)
if pc2-1 >= fn.Entry {
pc2--
}
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc2)
loc := Location{PC: uint64(pc), File: f, Line: ln, Fn: fn}
r[i] = Stackframe{Current: loc, Call: loc}
}
r[len(r)-1].Bottom = pcsVar.Len == int64(len(pcsVar.Children))
return r, nil
}
func (v *Variable) structMember(memberName string) (*Variable, error) {
if v.Unreadable != nil {
return v.clone(), nil
}
vname := v.Name
if v.loaded && (v.Flags&VariableFakeAddress) != 0 {
for i := range v.Children {
if v.Children[i].Name == memberName {
return &v.Children[i], nil
}
}
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
}
closure := false
switch v.Kind {
case reflect.Chan:
v = v.clone()
v.RealType = resolveTypedef(&(v.RealType.(*godwarf.ChanType).TypedefType))
case reflect.Interface:
v.loadInterface(0, false, LoadConfig{})
if len(v.Children) > 0 {
v = &v.Children[0]
}
case reflect.Func:
v.loadFunctionPtr(0, LoadConfig{MaxVariableRecurse: -1})
if v.Unreadable != nil {
return nil, v.Unreadable
}
if v.closureAddr != 0 {
fn := v.bi.PCToFunc(v.Base)
if fn != nil {
cst := fn.extra(v.bi).closureStructType
v = v.newVariable(v.Name, v.closureAddr, cst, v.mem)
closure = true
}
}
}
queue := []*Variable{v}
seen := map[string]struct{}{} // prevent infinite loops
first := true
for len(queue) > 0 {
v := queue[0]
queue = append(queue[:0], queue[1:]...)
if _, isseen := seen[v.RealType.String()]; isseen {
continue
}
seen[v.RealType.String()] = struct{}{}
structVar := v.maybeDereference()
structVar.Name = v.Name
if structVar.Unreadable != nil {
return structVar, nil
}
switch t := structVar.RealType.(type) {
case *godwarf.StructType:
for _, field := range t.Field {
if field.Name == memberName {
return structVar.toField(field)
}
if len(queue) == 0 && field.Name == "&"+memberName && closure {
f, err := structVar.toField(field)
if err != nil {
return nil, err
}
return f.maybeDereference(), nil
}
isEmbeddedStructMember :=
field.Embedded ||
(field.Type.Common().Name == field.Name) ||
(len(field.Name) > 1 &&
field.Name[0] == '*' &&
field.Type.Common().Name[1:] == field.Name[1:])
if !isEmbeddedStructMember {
continue
}
embeddedVar, err := structVar.toField(field)
if err != nil {
return nil, err
}
// Check for embedded field referenced by type name
parts := strings.Split(field.Name, ".")
if len(parts) > 1 && parts[1] == memberName {
return embeddedVar, nil
}
embeddedVar.Name = structVar.Name
queue = append(queue, embeddedVar)
}
default:
if first {
return nil, fmt.Errorf("%s (type %s) is not a struct", vname, structVar.TypeString())
}
}
first = false
}
return nil, fmt.Errorf("%s has no member %s", vname, memberName)
}
func readVarEntry(entry *godwarf.Tree, image *Image) (name string, typ godwarf.Type, err error) {
name, ok := entry.Val(dwarf.AttrName).(string)
if !ok {
return "", nil, errors.New("malformed variable DIE (name)")
}
typ, err = entry.Type(image.dwarf, image.index, image.typeCache)
if err != nil {
return "", nil, err
}
return name, typ, nil
}
// Extracts the name and type of a variable from a dwarf entry
// then executes the instructions given in the DW_AT_location attribute to grab the variable's address
func extractVarInfoFromEntry(tgt *Target, bi *BinaryInfo, image *Image, regs op.DwarfRegisters, mem MemoryReadWriter, entry *godwarf.Tree, dictAddr uint64) (*Variable, error) {
if entry.Tag != dwarf.TagFormalParameter && entry.Tag != dwarf.TagVariable {
return nil, fmt.Errorf("invalid entry tag, only supports FormalParameter and Variable, got %s", entry.Tag.String())
}
n, t, err := readVarEntry(entry, image)
if err != nil {
return nil, err
}
t, err = resolveParametricType(bi, mem, t, dictAddr)
if err != nil {
// Log the error, keep going with t, which will be the shape type
logflags.DebuggerLogger().Errorf("could not resolve parametric type of %s: %v", n, err)
}
addr, pieces, descr, err := bi.Location(entry, dwarf.AttrLocation, regs.PC(), regs, mem)
if pieces != nil {
var cmem *compositeMemory
if tgt != nil {
addr, cmem, err = tgt.newCompositeMemory(mem, regs, pieces, descr, t.Common().ByteSize)
} else {
cmem, err = newCompositeMemory(mem, bi.Arch, regs, pieces, t.Common().ByteSize)
if cmem != nil {
cmem.base = fakeAddressUnresolv
addr = int64(cmem.base)
}
}
if cmem != nil {
mem = cmem
}
}
v := newVariable(n, uint64(addr), t, bi, mem)
if pieces != nil {
v.Flags |= VariableFakeAddress
}
v.LocationExpr = descr
v.DeclLine, _ = entry.Val(dwarf.AttrDeclLine).(int64)
if err != nil {
v.Unreadable = err
}
return v, nil
}
// If v is a pointer a new variable is returned containing the value pointed by v.
func (v *Variable) maybeDereference() *Variable {
if v.Unreadable != nil {
return v
}
switch t := v.RealType.(type) {
case *godwarf.PtrType:
if (v.Addr == 0 || v.Flags&VariableFakeAddress != 0) && len(v.Children) == 1 && v.loaded {
// fake pointer variable constructed by casting an integer to a pointer type
return &v.Children[0]
}
ptrval, err := readUintRaw(v.mem, v.Addr, t.ByteSize)
r := v.newVariable("", ptrval, t.Type, DereferenceMemory(v.mem))
if err != nil {
r.Unreadable = err
}
return r
default:
return v
}
}
// loadPtr assumes that v is a pointer and loads its value. v also gets a child
// variable, representing the pointed-to value. If v is already loaded,
// loadPtr() is a no-op.
func (v *Variable) loadPtr() {
if len(v.Children) > 0 {
// We've already loaded this variable.
return
}
t := v.RealType.(*godwarf.PtrType)
v.Len = 1
var child *Variable
if v.Unreadable == nil {
ptrval, err := readUintRaw(v.mem, v.Addr, t.ByteSize)
if err == nil {
child = v.newVariable("", ptrval, t.Type, DereferenceMemory(v.mem))
} else {
// We failed to read the pointer value; mark v as unreadable.
v.Unreadable = err
}
}
if v.Unreadable != nil {
// Pointers get a child even if their value can't be read, to
// maintain backwards compatibility.
child = v.newVariable("", 0 /* addr */, t.Type, DereferenceMemory(v.mem))
child.Unreadable = fmt.Errorf("parent pointer unreadable: %w", v.Unreadable)
}
v.Children = []Variable{*child}
v.Value = constant.MakeUint64(v.Children[0].Addr)
}
func loadValues(vars []*Variable, cfg LoadConfig) {
for i := range vars {
vars[i].loadValueInternal(0, cfg)
}
}
// Extracts the value of the variable at the given address.
func (v *Variable) loadValue(cfg LoadConfig) {
v.loadValueInternal(0, cfg)
}
func (v *Variable) loadValueInternal(recurseLevel int, cfg LoadConfig) {
if v.Unreadable != nil || v.loaded || (v.Addr == 0 && v.Base == 0) {
return
}
v.loaded = true
switch v.Kind {
case reflect.Ptr, reflect.UnsafePointer:
v.loadPtr()
if cfg.FollowPointers {
// Don't increase the recursion level when dereferencing pointers
// unless this is a pointer to interface (which could cause an infinite loop)
nextLvl := recurseLevel
checkLvl := false
if v.Children[0].Kind == reflect.Interface {
nextLvl++
} else if ptyp, isptr := v.RealType.(*godwarf.PtrType); isptr {
_, elemTypIsPtr := resolveTypedef(ptyp.Type).(*godwarf.PtrType)
if elemTypIsPtr {
nextLvl++
checkLvl = true
}
}
if checkLvl && recurseLevel > cfg.MaxVariableRecurse {
v.Children[0].OnlyAddr = true
} else {
v.Children[0].loadValueInternal(nextLvl, cfg)
}
} else {
v.Children[0].OnlyAddr = true
}
case reflect.Chan:
sv := v.clone()
sv.RealType = resolveTypedef(&(sv.RealType.(*godwarf.ChanType).TypedefType))
sv = sv.maybeDereference()
sv.loadValueInternal(0, loadFullValue)
v.Children = sv.Children
v.Len = sv.Len
v.Base = sv.Addr
case reflect.Map:
if recurseLevel <= cfg.MaxVariableRecurse {
v.loadMap(recurseLevel, cfg)
} else {
// loads length so that the client knows that the map isn't empty
v.mapIterator(0)
}
case reflect.String:
var val string
switch {
case v.Flags&VariableCPtr != 0:
var done bool
val, done, v.Unreadable = readCStringValue(DereferenceMemory(v.mem), v.Base, cfg)
if v.Unreadable == nil {
v.Len = int64(len(val))
if !done {
v.Len++
}
}
case v.Flags&VariableCPURegister != 0:
val = fmt.Sprintf("%x", v.reg.Bytes)
s := v.Base - fakeAddressUnresolv
if s < uint64(len(val)) {
val = val[s:]
if v.Len >= 0 && v.Len < int64(len(val)) {
val = val[:v.Len]
}
}
default:
val, v.Unreadable = readStringValue(DereferenceMemory(v.mem), v.Base, v.Len, cfg)
}
v.Value = constant.MakeString(val)
case reflect.Slice, reflect.Array:
v.loadArrayValues(recurseLevel, cfg)
case reflect.Struct:
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
t := v.RealType.(*godwarf.StructType)
v.Len = int64(len(t.Field))
// Recursively call extractValue to grab
// the value of all the members of the struct.
if recurseLevel <= cfg.MaxVariableRecurse {
v.Children = make([]Variable, 0, len(t.Field))
for i, field := range t.Field {
if cfg.MaxStructFields >= 0 && len(v.Children) >= cfg.MaxStructFields {
break
}
f, _ := v.toField(field)
f.Name = field.Name
if t.StructName == "" && len(f.Name) > 0 && f.Name[0] == '&' && f.Kind == reflect.Ptr {
// This struct is a closure struct and the field is actually a variable
// captured by reference.
f = f.maybeDereference()
f.Flags |= VariableEscaped
f.Name = field.Name[1:]
}
v.Children = append(v.Children, *f)
v.Children[i].loadValueInternal(recurseLevel+1, cfg)
}
}
if t.Name == "time.Time" {
v.formatTime()
}
case reflect.Interface:
v.loadInterface(recurseLevel, true, cfg)
case reflect.Complex64, reflect.Complex128:
v.readComplex(v.RealType.(*godwarf.ComplexType).ByteSize)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
var val int64
val, v.Unreadable = readIntRaw(v.mem, v.Addr, v.RealType.(*godwarf.IntType).ByteSize)
v.Value = constant.MakeInt64(val)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Flags&VariableCPURegister != 0 {
v.Value = constant.MakeUint64(v.reg.Uint64Val)
} else {
var val uint64
val, v.Unreadable = readUintRaw(v.mem, v.Addr, v.RealType.(*godwarf.UintType).ByteSize)
v.Value = constant.MakeUint64(val)
}
case reflect.Bool:
val := make([]byte, 1)
_, err := v.mem.ReadMemory(val, v.Addr)
v.Unreadable = err
if err == nil {
v.Value = constant.MakeBool(val[0] != 0)
}
case reflect.Float32, reflect.Float64:
var val float64
val, v.Unreadable = v.readFloatRaw(v.RealType.(*godwarf.FloatType).ByteSize)
v.Value = constant.MakeFloat64(val)
switch {
case math.IsInf(val, +1):
v.FloatSpecial = FloatIsPosInf
case math.IsInf(val, -1):
v.FloatSpecial = FloatIsNegInf
case math.IsNaN(val):
v.FloatSpecial = FloatIsNaN
}
case reflect.Func:
v.loadFunctionPtr(recurseLevel, cfg)
default:
v.Unreadable = fmt.Errorf("unknown or unsupported kind: %q", v.Kind.String())
}
}
// convertToEface converts srcv into an "interface {}" and writes it to
// dstv.
// Dstv must be a variable of type "interface {}" and srcv must either be an
// interface or a pointer shaped variable (map, channel, pointer or struct
// containing a single pointer)
func convertToEface(srcv, dstv *Variable) error {
if dstv.RealType.String() != "interface {}" {
return &typeConvErr{srcv.DwarfType, dstv.RealType}
}
if _, isiface := srcv.RealType.(*godwarf.InterfaceType); isiface {
// iface -> eface conversion
_type, data, _ := srcv.readInterface()
if srcv.Unreadable != nil {
return srcv.Unreadable
}
_type = _type.maybeDereference()
dstv.writeEmptyInterface(_type.Addr, data)
return nil
}
typeAddr, typeKind, runtimeTypeFound, err := dwarfToRuntimeType(srcv.bi, srcv.mem, srcv.RealType)
if err != nil {
return fmt.Errorf("can not convert value of type %s to %s: %v", srcv.DwarfType.String(), dstv.DwarfType.String(), err)
}
if !runtimeTypeFound || typeKind&kindDirectIface == 0 {
return &typeConvErr{srcv.DwarfType, dstv.RealType}
}
return dstv.writeEmptyInterface(typeAddr, srcv)
}
func readStringInfo(mem MemoryReadWriter, arch *Arch, addr uint64, typ *godwarf.StringType) (uint64, int64, error) {
// string data structure is always two ptrs in size. Addr, followed by len
// https://research.swtch.com/godata
mem = cacheMemory(mem, addr, arch.PtrSize()*2)
var strlen int64
var outaddr uint64
var err error
for _, field := range typ.StructType.Field {
switch field.Name {
case "len":
strlen, err = readIntRaw(mem, addr+uint64(field.ByteOffset), int64(arch.PtrSize()))
if err != nil {
return 0, 0, fmt.Errorf("could not read string len %s", err)
}
if strlen < 0 {
return 0, 0, fmt.Errorf("invalid length: %d", strlen)
}
case "str":
outaddr, err = readUintRaw(mem, addr+uint64(field.ByteOffset), int64(arch.PtrSize()))
if err != nil {
return 0, 0, fmt.Errorf("could not read string pointer %s", err)
}
if addr == 0 {
return 0, 0, nil
}
}
}
return outaddr, strlen, nil
}
func readStringValue(mem MemoryReadWriter, addr uint64, strlen int64, cfg LoadConfig) (string, error) {
if strlen == 0 {
return "", nil
}
count := strlen
if count > int64(cfg.MaxStringLen) {
count = int64(cfg.MaxStringLen)
}
val := make([]byte, int(count))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return "", fmt.Errorf("could not read string at %#v due to %s", addr, err)
}
return string(val), nil
}
func readCStringValue(mem MemoryReadWriter, addr uint64, cfg LoadConfig) (string, bool, error) {
buf := make([]byte, cfg.MaxStringLen) //
val := buf[:0] // part of the string we've already read
for len(buf) > 0 {
// Reads some memory for the string but (a) never more than we would
// need (considering cfg.MaxStringLen), and (b) never cross a page boundary
// until we're sure we have to.
// The page check is needed to avoid getting an I/O error for reading
// memory we don't even need.
// We don't know how big a page is but 1024 is a reasonable minimum common
// divisor for all architectures.
curaddr := addr + uint64(len(val))
maxsize := int(alignAddr(int64(curaddr+1), 1024) - int64(curaddr))
size := len(buf)
if size > maxsize {
size = maxsize
}
_, err := mem.ReadMemory(buf[:size], curaddr)
if err != nil {
return "", false, fmt.Errorf("could not read string at %#v due to %s", addr, err)
}
done := false
for i := 0; i < size; i++ {
if buf[i] == 0 {
done = true
size = i
break
}
}
val = val[:len(val)+size]
buf = buf[size:]
if done {
return string(val), true, nil
}
}
return string(val), false, nil
}
const (
sliceArrayFieldName = "array"
sliceLenFieldName = "len"
sliceCapFieldName = "cap"
)
func (v *Variable) loadSliceInfo(t *godwarf.SliceType) {
v.mem = cacheMemory(v.mem, v.Addr, int(t.Size()))
var err error
for _, f := range t.Field {
switch f.Name {
case sliceArrayFieldName:
var base uint64
base, err = readUintRaw(v.mem, uint64(int64(v.Addr)+f.ByteOffset), f.Type.Size())
if err == nil {
v.Base = base
// Dereference array type to get value type
ptrType, ok := f.Type.(*godwarf.PtrType)
if !ok {
//lint:ignore ST1005 backwards compatibility
v.Unreadable = fmt.Errorf("Invalid type %s in slice array", f.Type)
return
}
v.fieldType = ptrType.Type
}
case sliceLenFieldName:
lstrAddr, _ := v.toField(f)
lstrAddr.loadValue(loadSingleValue)
err = lstrAddr.Unreadable
if err == nil {
v.Len, _ = constant.Int64Val(lstrAddr.Value)
}
case sliceCapFieldName:
cstrAddr, _ := v.toField(f)
cstrAddr.loadValue(loadSingleValue)
err = cstrAddr.Unreadable
if err == nil {
v.Cap, _ = constant.Int64Val(cstrAddr.Value)
}
}
if err != nil {
v.Unreadable = err
return
}
}
v.stride = v.fieldType.Size()
if t, ok := v.fieldType.(*godwarf.PtrType); ok {
v.stride = t.ByteSize
}
}
// loadChanInfo loads the buffer size of the channel and changes the type of
// the buf field from unsafe.Pointer to an array of the correct type.
func (v *Variable) loadChanInfo() {
chanType, ok := v.RealType.(*godwarf.ChanType)
if !ok {
v.Unreadable = errors.New("bad channel type")
return
}
sv := v.clone()
sv.RealType = resolveTypedef(&(chanType.TypedefType))
sv = sv.maybeDereference()
if sv.Unreadable != nil || sv.Addr == 0 {
return
}
v.Base = sv.Addr
structType, ok := sv.DwarfType.(*godwarf.StructType)
if !ok {
v.Unreadable = errors.New("bad channel type")
return
}
lenAddr, _ := sv.toField(structType.Field[1])
lenAddr.loadValue(loadSingleValue)
if lenAddr.Unreadable != nil {
v.Unreadable = fmt.Errorf("unreadable length: %v", lenAddr.Unreadable)
return
}
chanLen, _ := constant.Uint64Val(lenAddr.Value)
newStructType := &godwarf.StructType{}
*newStructType = *structType
newStructType.Field = make([]*godwarf.StructField, len(structType.Field))
for i := range structType.Field {
field := &godwarf.StructField{}
*field = *structType.Field[i]
if field.Name == "buf" {
field.Type = pointerTo(fakeArrayType(chanLen, chanType.ElemType), v.bi.Arch)
}
newStructType.Field[i] = field
}
v.RealType = &godwarf.ChanType{
TypedefType: godwarf.TypedefType{
CommonType: chanType.TypedefType.CommonType,
Type: pointerTo(newStructType, v.bi.Arch),
},
ElemType: chanType.ElemType,
}
}
func (v *Variable) loadArrayValues(recurseLevel int, cfg LoadConfig) {
if v.Unreadable != nil {
return
}
if v.Len < 0 {
//lint:ignore ST1005 backwards compatibility
v.Unreadable = errors.New("Negative array length")
return
}
if v.Base == 0 && v.Len > 0 {
v.Unreadable = errors.New("non-zero length array with nil base")
return
}
count := v.Len
// Cap number of elements
if (v.Flags&variableTrustLen == 0) && (count > int64(cfg.MaxArrayValues)) {
count = int64(cfg.MaxArrayValues)
}
if v.Base+uint64(v.stride*count) < v.Base {
v.Unreadable = fmt.Errorf("bad array base address %#x", v.Base)
}
if v.stride < maxArrayStridePrefetch {
v.mem = cacheMemory(v.mem, v.Base, int(v.stride*count))
}
errcount := 0
mem := v.mem
if v.Kind != reflect.Array {
mem = DereferenceMemory(mem)
}
for i := int64(0); i < count; i++ {
fieldvar := v.newVariable("", uint64(int64(v.Base)+(i*v.stride)), v.fieldType, mem)
fieldvar.loadValueInternal(recurseLevel+1, cfg)
if fieldvar.Unreadable != nil {
errcount++
}
v.Children = append(v.Children, *fieldvar)
if errcount > maxErrCount {
break
}
}
}
func (v *Variable) readComplex(size int64) {
var fs int64
switch size {
case 8:
fs = 4
case 16:
fs = 8
default:
v.Unreadable = fmt.Errorf("invalid size (%d) for complex type", size)
return
}
ftyp := godwarf.FakeBasicType("float", int(fs*8))
realvar := v.newVariable("real", v.Addr, ftyp, v.mem)
imagvar := v.newVariable("imaginary", v.Addr+uint64(fs), ftyp, v.mem)
realvar.loadValue(loadSingleValue)
imagvar.loadValue(loadSingleValue)
v.Value = constant.BinaryOp(realvar.Value, token.ADD, constant.MakeImag(imagvar.Value))
}
func (v *Variable) writeComplex(real, imag float64, size int64) error {
err := v.writeFloatRaw(real, size/2)
if err != nil {
return err
}
imagaddr := *v
imagaddr.Addr += uint64(size / 2)
return imagaddr.writeFloatRaw(imag, size/2)
}
func readIntRaw(mem MemoryReadWriter, addr uint64, size int64) (int64, error) {
var n int64
val := make([]byte, int(size))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return 0, err
}
switch size {
case 1:
n = int64(int8(val[0]))
case 2:
n = int64(int16(binary.LittleEndian.Uint16(val)))
case 4:
n = int64(int32(binary.LittleEndian.Uint32(val)))
case 8:
n = int64(binary.LittleEndian.Uint64(val))
}
return n, nil
}
func (v *Variable) writeUint(value uint64, size int64) error {
val := make([]byte, size)
switch size {
case 1:
val[0] = byte(value)
case 2:
binary.LittleEndian.PutUint16(val, uint16(value))
case 4:
binary.LittleEndian.PutUint32(val, uint32(value))
case 8:
binary.LittleEndian.PutUint64(val, value)
}
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
func readUintRaw(mem MemoryReadWriter, addr uint64, size int64) (uint64, error) {
var n uint64
val := make([]byte, int(size))
_, err := mem.ReadMemory(val, addr)
if err != nil {
return 0, err
}
switch size {
case 1:
n = uint64(val[0])
case 2:
n = uint64(binary.LittleEndian.Uint16(val))
case 4:
n = uint64(binary.LittleEndian.Uint32(val))
case 8:
n = binary.LittleEndian.Uint64(val)
}
return n, nil
}
func (v *Variable) readFloatRaw(size int64) (float64, error) {
val := make([]byte, int(size))
_, err := v.mem.ReadMemory(val, v.Addr)
if err != nil {
return 0.0, err
}
buf := bytes.NewBuffer(val)
switch size {
case 4:
n := float32(0)
binary.Read(buf, binary.LittleEndian, &n)
return float64(n), nil
case 8:
n := float64(0)
binary.Read(buf, binary.LittleEndian, &n)
return n, nil
}
return 0.0, errors.New("could not read float")
}
func (v *Variable) writeFloatRaw(f float64, size int64) error {
buf := bytes.NewBuffer(make([]byte, 0, size))
switch size {
case 4:
n := float32(f)
binary.Write(buf, binary.LittleEndian, n)
case 8:
n := f
binary.Write(buf, binary.LittleEndian, n)
}
_, err := v.mem.WriteMemory(v.Addr, buf.Bytes())
return err
}
func (v *Variable) writeBool(value bool) error {
val := []byte{0}
val[0] = *(*byte)(unsafe.Pointer(&value))
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
func (v *Variable) writeZero() error {
val := make([]byte, v.RealType.Size())
_, err := v.mem.WriteMemory(v.Addr, val)
return err
}
// writeEmptyInterface writes the empty interface of type typeAddr and data as the data field.
func (v *Variable) writeEmptyInterface(typeAddr uint64, data *Variable) error {
dstType, dstData, _ := v.readInterface()
if v.Unreadable != nil {
return v.Unreadable
}
dstType.writeUint(typeAddr, dstType.RealType.Size())
dstData.writeCopy(data)
return nil
}
func (v *Variable) writeSlice(len, cap int64, base uint64) error {
for _, f := range v.RealType.(*godwarf.SliceType).Field {
switch f.Name {
case sliceArrayFieldName:
arrv, _ := v.toField(f)
if err := arrv.writeUint(base, arrv.RealType.Size()); err != nil {
return err
}
case sliceLenFieldName:
lenv, _ := v.toField(f)
if err := lenv.writeUint(uint64(len), lenv.RealType.Size()); err != nil {
return err
}
case sliceCapFieldName:
capv, _ := v.toField(f)
if err := capv.writeUint(uint64(cap), capv.RealType.Size()); err != nil {
return err
}
}
}
return nil
}
func (v *Variable) writeString(len, base uint64) error {
writePointer(v.bi, v.mem, v.Addr, base)
writePointer(v.bi, v.mem, v.Addr+uint64(v.bi.Arch.PtrSize()), len)
return nil
}
func (v *Variable) writeCopy(srcv *Variable) error {
buf := make([]byte, srcv.RealType.Size())
_, err := srcv.mem.ReadMemory(buf, srcv.Addr)
if err != nil {
return err
}
_, err = v.mem.WriteMemory(v.Addr, buf)
return err
}
func (v *Variable) loadFunctionPtr(recurseLevel int, cfg LoadConfig) {
// dereference pointer to find function pc
v.closureAddr = v.funcvalAddr()
if v.Unreadable != nil {
return
}
if v.closureAddr == 0 {
v.Base = 0
v.Value = constant.MakeString("")
return
}
val, err := readUintRaw(v.mem, v.closureAddr, int64(v.bi.Arch.PtrSize()))
if err != nil {
v.Unreadable = err
return
}
v.Base = val
fn := v.bi.PCToFunc(v.Base)
if fn == nil {
v.Unreadable = fmt.Errorf("could not find function for %#v", v.Base)
return
}
v.Value = constant.MakeString(fn.Name)
cst := fn.extra(v.bi).closureStructType
v.Len = int64(len(cst.Field))
if recurseLevel <= cfg.MaxVariableRecurse {
v2 := v.newVariable("", v.closureAddr, cst, v.mem)
v2.loadValueInternal(recurseLevel, cfg)
v.Children = v2.Children
}
}
// funcvalAddr reads the address of the funcval contained in a function variable.
func (v *Variable) funcvalAddr() uint64 {
val, err := readUintRaw(v.mem, v.Addr, int64(v.bi.Arch.PtrSize()))
if err != nil {
v.Unreadable = err
return 0
}
return val
}
func (v *Variable) loadMap(recurseLevel int, cfg LoadConfig) {
it := v.mapIterator(uint64(cfg.MaxMapBuckets))
if it == nil {
return
}
if v.Len == 0 || int64(v.mapSkip) >= v.Len || cfg.MaxArrayValues == 0 {
return
}
for skip := 0; skip < v.mapSkip; skip++ {
if ok := it.next(); !ok {
v.Unreadable = errors.New("map index out of bounds")
return
}
}
count := 0
errcount := 0
for it.next() {
key := it.key()
val := it.value()
key.loadValueInternal(recurseLevel+1, cfg)
val.loadValueInternal(recurseLevel+1, cfg)
if key.Unreadable != nil || val.Unreadable != nil {
errcount++
}
v.Children = append(v.Children, *key, *val)
count++
if errcount > maxErrCount {
break
}
if count >= cfg.MaxArrayValues || int64(count) >= v.Len {
break
}
}
}
func (v *Variable) readInterface() (_type, data *Variable, isnil bool) {
// An interface variable is implemented either by a runtime.iface
// struct or a runtime.eface struct. The difference being that empty
// interfaces (i.e. "interface {}") are represented by runtime.eface
// and non-empty interfaces by runtime.iface.
//
// For both runtime.ifaces and runtime.efaces the data is stored in v.data
//
// The concrete type however is stored in v.tab._type for non-empty
// interfaces and in v._type for empty interfaces.
//
// For nil empty interface variables _type will be nil, for nil
// non-empty interface variables tab will be nil
//
// In either case the _type field is a pointer to a runtime._type struct.
//
// The following code works for both runtime.iface and runtime.eface.
v.mem = cacheMemory(v.mem, v.Addr, int(v.RealType.Size()))
ityp := resolveTypedef(&v.RealType.(*godwarf.InterfaceType).TypedefType).(*godwarf.StructType)
// +rtype -field iface.tab *itab|*internal/abi.ITab
// +rtype -field iface.data unsafe.Pointer
// +rtype -field eface._type *_type|*internal/abi.Type
// +rtype -field eface.data unsafe.Pointer
for _, f := range ityp.Field {
switch f.Name {
case "tab": // for runtime.iface
tab, _ := v.toField(f) // +rtype *itab|*internal/abi.ITab
tab = tab.maybeDereference()
isnil = tab.Addr == 0
if !isnil {
var err error
_type, err = tab.structMember("Type") // +rtype *internal/abi.Type
if err != nil {
_type, err = tab.structMember("_type") // +rtype *_type|*internal/abi.Type
if err != nil {
v.Unreadable = fmt.Errorf("invalid interface type: %v", err)
return
}
}
}
case "_type": // for runtime.eface
_type, _ = v.toField(f)
isnil = _type.maybeDereference().Addr == 0
case "data":
data, _ = v.toField(f)
}
}
return
}
func (v *Variable) loadInterface(recurseLevel int, loadData bool, cfg LoadConfig) {
_type, data, isnil := v.readInterface()
if isnil {
// interface to nil
data = data.maybeDereference()
v.Children = []Variable{*data}
if loadData {
v.Children[0].loadValueInternal(recurseLevel, cfg)
}
return
}
if data == nil {
v.Unreadable = errors.New("invalid interface type")
return
}
mds, err := LoadModuleData(_type.bi, _type.mem)
if err != nil {
v.Unreadable = fmt.Errorf("error loading module data: %v", err)
return
}
typ, kind, err := RuntimeTypeToDIE(_type, data.Addr, mds)
if err != nil {
v.Unreadable = err
return
}
deref := false
if kind&kindDirectIface == 0 {
realtyp := resolveTypedef(typ)
if _, isptr := realtyp.(*godwarf.PtrType); !isptr {
typ = pointerTo(typ, v.bi.Arch)
deref = true
}
}
data = data.newVariable("data", data.Addr, typ, data.mem)
if deref {
data = data.maybeDereference()
data.Name = "data"
}
v.Children = []Variable{*data}
if loadData && recurseLevel <= cfg.MaxVariableRecurse {
v.Children[0].loadValueInternal(recurseLevel, cfg)
} else {
v.Children[0].OnlyAddr = true
}
}
// ConstDescr describes the value of v using constants.
func (v *Variable) ConstDescr() string {
if v.bi == nil || (v.Flags&VariableConstant != 0) {
return ""
}
ctyp := v.bi.consts.Get(v.DwarfType)
if ctyp == nil {
return ""
}
if typename := v.DwarfType.Common().Name; !strings.Contains(typename, ".") || strings.HasPrefix(typename, "C.") {
// only attempt to use constants for user defined type, otherwise every
// int variable with value 1 will be described with io.SeekCurrent and other
// similar problems.
return ""
}
switch v.Kind {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n, _ := constant.Int64Val(v.Value)
return ctyp.describe(n)
}
return ""
}
// registerVariableTypeConv implements type conversions for CPU register variables (REGNAME.int8, etc)
func (v *Variable) registerVariableTypeConv(newtyp string) (*Variable, error) {
var n int = 0
for i := 0; i < len(v.reg.Bytes); i += n {
var child *Variable
switch newtyp {
case "int8":
child = newConstant(constant.MakeInt64(int64(int8(v.reg.Bytes[i]))), v.mem)
child.Kind = reflect.Int8
n = 1
case "int16":
child = newConstant(constant.MakeInt64(int64(int16(binary.LittleEndian.Uint16(v.reg.Bytes[i:])))), v.mem)
child.Kind = reflect.Int16
n = 2
case "int32":
child = newConstant(constant.MakeInt64(int64(int32(binary.LittleEndian.Uint32(v.reg.Bytes[i:])))), v.mem)
child.Kind = reflect.Int32
n = 4
case "int64":
child = newConstant(constant.MakeInt64(int64(binary.LittleEndian.Uint64(v.reg.Bytes[i:]))), v.mem)
child.Kind = reflect.Int64
n = 8
case "uint8":
child = newConstant(constant.MakeUint64(uint64(v.reg.Bytes[i])), v.mem)
child.Kind = reflect.Uint8
n = 1
case "uint16":
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint16(v.reg.Bytes[i:]))), v.mem)
child.Kind = reflect.Uint16
n = 2
case "uint32":
child = newConstant(constant.MakeUint64(uint64(binary.LittleEndian.Uint32(v.reg.Bytes[i:]))), v.mem)
child.Kind = reflect.Uint32
n = 4
case "uint64":
child = newConstant(constant.MakeUint64(binary.LittleEndian.Uint64(v.reg.Bytes[i:])), v.mem)
child.Kind = reflect.Uint64
n = 8
case "float32":
a := binary.LittleEndian.Uint32(v.reg.Bytes[i:])
x := *(*float32)(unsafe.Pointer(&a))
child = newConstant(constant.MakeFloat64(float64(x)), v.mem)
child.Kind = reflect.Float32
n = 4
case "float64":
a := binary.LittleEndian.Uint64(v.reg.Bytes[i:])
x := *(*float64)(unsafe.Pointer(&a))
child = newConstant(constant.MakeFloat64(x), v.mem)
child.Kind = reflect.Float64
n = 8
default:
if n == 0 {
for _, pfx := range []string{"uint", "int"} {
if strings.HasPrefix(newtyp, pfx) {
n, _ = strconv.Atoi(newtyp[len(pfx):])
break
}
}
if n == 0 || bits.OnesCount64(uint64(n)) != 1 {
return nil, fmt.Errorf("unknown CPU register type conversion to %q", newtyp)
}
n = n / 8
}
child = newConstant(constant.MakeString(fmt.Sprintf("%x", v.reg.Bytes[i:][:n])), v.mem)
}
v.Children = append(v.Children, *child)
}
v.loaded = true
v.Kind = reflect.Array
v.Len = int64(len(v.Children))
v.Base = fakeAddressUnresolv
v.DwarfType = fakeArrayType(uint64(len(v.Children)), &godwarf.VoidType{CommonType: godwarf.CommonType{ByteSize: int64(n)}})
v.RealType = v.DwarfType
return v, nil
}
func isCgoType(bi *BinaryInfo, typ godwarf.Type) bool {
cu := bi.Images[typ.Common().Index].findCompileUnitForOffset(typ.Common().Offset)
if cu == nil {
return false
}
return !cu.isgo
}
func isCgoCharPtr(bi *BinaryInfo, typ *godwarf.PtrType) bool {
if !isCgoType(bi, typ) {
return false
}
fieldtyp := typ.Type
resolveQualTypedef:
for {
switch t := fieldtyp.(type) {
case *godwarf.QualType:
fieldtyp = t.Type
case *godwarf.TypedefType:
fieldtyp = t.Type
default:
break resolveQualTypedef
}
}
_, ischar := fieldtyp.(*godwarf.CharType)
_, isuchar := fieldtyp.(*godwarf.UcharType)
return ischar || isuchar
}
func (cm constantsMap) Get(typ godwarf.Type) *constantType {
ctyp := cm[dwarfRef{typ.Common().Index, typ.Common().Offset}]
if ctyp == nil {
return nil
}
typepkg := packageName(typ.String()) + "."
if !ctyp.initialized {
ctyp.initialized = true
sort.Sort(constantValuesByValue(ctyp.values))
for i := range ctyp.values {
ctyp.values[i].name = strings.TrimPrefix(ctyp.values[i].name, typepkg)
if bits.OnesCount64(uint64(ctyp.values[i].value)) == 1 {
ctyp.values[i].singleBit = true
}
}
}
return ctyp
}
func (ctyp *constantType) describe(n int64) string {
for _, val := range ctyp.values {
if val.value == n {
return val.name
}
}
if n == 0 {
return ""
}
// If all the values for this constant only have one bit set we try to
// represent the value as a bitwise or of constants.
fields := []string{}
for _, val := range ctyp.values {
if !val.singleBit {
continue
}
if n&val.value != 0 {
fields = append(fields, val.name)
n = n & ^val.value
}
}
if n == 0 {
return strings.Join(fields, "|")
}
return ""
}
type variablesByDepthAndDeclLine struct {
vars []*Variable
depths []int
}
func (v *variablesByDepthAndDeclLine) Len() int { return len(v.vars) }
func (v *variablesByDepthAndDeclLine) Less(i int, j int) bool {
if v.depths[i] == v.depths[j] {
return v.vars[i].DeclLine < v.vars[j].DeclLine
}
return v.depths[i] < v.depths[j]
}
func (v *variablesByDepthAndDeclLine) Swap(i int, j int) {
v.depths[i], v.depths[j] = v.depths[j], v.depths[i]
v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
}
type constantValuesByValue []constantValue
func (v constantValuesByValue) Len() int { return len(v) }
func (v constantValuesByValue) Less(i int, j int) bool { return v[i].value < v[j].value }
func (v constantValuesByValue) Swap(i int, j int) { v[i], v[j] = v[j], v[i] }
const (
timeTimeWallHasMonotonicBit uint64 = (1 << 63) // hasMonotonic bit of time.Time.wall
//lint:ignore ST1011 addSeconds is the name of the relevant function
maxAddSeconds time.Duration = (time.Duration(^uint64(0)>>1) / time.Second) * time.Second // maximum number of seconds that can be added with (time.Time).Add, measured in nanoseconds
wallNsecShift = 30 // size of the nanoseconds field of time.Time.wall
unixTimestampOfWallEpoch = -2682288000 // number of seconds between the unix epoch and the epoch for time.Time.wall (1 jan 1885)
)
// formatTime writes formatted value of a time.Time to v.Value.
// See $GOROOT/src/time/time.go for a description of time.Time internals.
func (v *Variable) formatTime() {
wallv := v.fieldVariable("wall")
extv := v.fieldVariable("ext")
if wallv == nil || extv == nil || wallv.Unreadable != nil || extv.Unreadable != nil || wallv.Value == nil || extv.Value == nil {
return
}
var loc *time.Location
locv := v.fieldVariable("loc")
if locv != nil && locv.Unreadable == nil {
namev := locv.loadFieldNamed("name")
if namev != nil && namev.Unreadable == nil {
name := constant.StringVal(namev.Value)
loc, _ = time.LoadLocation(name)
}
}
wall, _ := constant.Uint64Val(wallv.Value)
ext, _ := constant.Int64Val(extv.Value)
hasMonotonic := (wall & timeTimeWallHasMonotonicBit) != 0
if hasMonotonic {
// the 33-bit field of wall holds a 33-bit unsigned wall
// seconds since Jan 1 year 1885, and ext holds a signed 64-bit monotonic
// clock reading, nanoseconds since process start
sec := int64(wall << 1 >> (wallNsecShift + 1)) // seconds since 1 Jan 1885
t := time.Unix(sec+unixTimestampOfWallEpoch, 0).UTC()
if loc != nil {
t = t.In(loc)
}
v.Value = constant.MakeString(fmt.Sprintf("%s, %+d", t.Format(time.RFC3339), ext))
} else {
// the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext
var t time.Time
if ext > int64(maxAddSeconds/time.Second)*1000 {
// avoid doing the add loop below if it will take too much time
return
}
for ext > int64(maxAddSeconds/time.Second) {
t = t.Add(maxAddSeconds)
ext -= int64(maxAddSeconds / time.Second)
}
t = t.Add(time.Duration(ext) * time.Second)
if loc != nil {
t = t.In(loc)
}
v.Value = constant.MakeString(t.Format(time.RFC3339))
}
}
|