1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/*
Derby - Class org.apache.derbyTesting.functionTests.tests.memorydb.ClusMog
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
*/
package org.apache.derbyTesting.functionTests.tests.memorydb;
import java.util.Arrays;
import java.util.Random;
import org.apache.derbyTesting.junit.BaseTestCase;
/**
* Simple utility to compute/recover the parameters of a mixture-of-Gaussian
* distribution from independent samples.
*/
public class ClusMog
{
/** default constructor */
public ClusMog() {}
/**
* Compute/recover the parameters of a mixture-of-Gaussian distribution
* from given independent samples.
* @param n number of clusters (Gaussian components) to output
* @param center initial cluster centers for iterative refinement
* @param ns number of input samples
* @param sample input samples; will be sorted in ascending order during use
*/
public void cluster(int n, double center[], int ns, double sample[])
{
// Record input parameters.
setCenters(n, center);
setSamples(ns, sample);
// Initialize EM iterations.
initEM();
// Perform EM iterations until convergence.
final double thresh = 1.0e-6;
double oldmsr = Double.MAX_VALUE;
for (int it=1;; ++it) {
// one EM iteration
expectation();
maximization();
// Check for convergence.
final double msr = measure();
final double dif = Math.abs(msr - oldmsr);
final double err = dif / (1.0 + oldmsr);
oldmsr = msr;
if (err < thresh) { break; }
}
// Compute cluster weights.
computeWeights();
// diagnostic messages
printMog("JAVA-COMPUTED", n, weight, mean, var);
BaseTestCase.println("msr = (" + oldmsr + ")");
}
/**
* Compute an initial configuration of cluster centers uniformly spaced
* over the range of the input samples, for subsequent iterative refinement.
* @param n number of clusters to output
* @param center initial uniform cluster centers to compute
* @param ns number of input samples
* @param sample array of input samples
*/
public static void uniform(int n, double center[], int ns, double sample[])
{
double min_x = Double.MAX_VALUE, max_x = -Double.MAX_VALUE;
for (int i=0; i<ns; ++i) {
final double x = sample[i];
if (min_x > x) { min_x = x; }
if (max_x < x) { max_x = x; }
}
final double length = max_x - min_x;
final double increment = length / n;
center[0] = increment / 2;
for (int i=1; i<n; ++i) { center[i] = center[i-1] + increment; }
}
/**
* Compute an initial configuration of cluster centers uniformly distributed
* over the range of the input samples, for subsequent iterative refinement.
* @param n number of clusters to output
* @param center initial uniform cluster centers to compute
* @param ns number of input samples
* @param sample array of input samples
* @param rng random number generator
*/
public static void random(int n, double center[], int ns, double sample[],
Random rng)
{
double min_x = Double.MAX_VALUE, max_x = -Double.MAX_VALUE;
for (int i=0; i<ns; ++i) {
final double x = sample[i];
if (min_x > x) { min_x = x; }
if (max_x < x) { max_x = x; }
}
final double length = max_x - min_x;
for (int i=0; i<n; ++i) {
final double r = rng.nextDouble();
final double x = min_x + r * length;
center[i] = x;
}
}
/** Initialize cluster centers for EM iterations. */
void setCenters(int n, double center[])
{
if (1 <= n && n <= max_n) {
this.n = n;
System.arraycopy(center, 0, mean, 0, n);
}
else {
final String msg =
"Number of Gaussian components (" + n + ") not in [1, " + max_n + "].";
throw new IllegalArgumentException(msg);
}
}
/** Specify the input samples to work with. */
void setSamples(int ns, double sample[])
{
final int min_sample_size = n * min_sample_size_per_cluster;
if (ns >= min_sample_size) {
this.ns = ns;
this.sample = sample;
}
else {
final String msg =
"Insufficient sample size (" + ns + " < " + min_sample_size + ").";
throw new IllegalArgumentException(msg);
}
}
/** Initialize the EM (expectation-maximization) iterations. */
void initEM()
{
// Sort the input samples in ascending order.
Arrays.sort(sample, 0, ns);
// Sort the initial cluster centers in ascending order.
Arrays.sort(mean, 0, n);
// Initialize the cluster brackets.
maximization();
}
/** (Re-)compute cluster centers while holding cluster brackets fixed. */
void expectation()
{
// Remove empty clusters.
for (int i=0, j=1;;) {
// Examine the value at the current location.
final int bi = bracket[i];
// Locate the next larger value.
for (; j<n; ++j) {
final int bj = bracket[j];
if (bi < bj) {
// Move the larger value up to be adjacent to current value.
bracket[i+1] = bj;
// Advance loop variables.
++i; ++j; break;
}
}
// Check for loop termination.
if (j >= n) { n = i+1; break; }
}
// Compute cluster parameters.
for (int i=0; i<n; ++i) {
final int ini = bracket[i];
final int lim = bracket[i+1];
final int nb = (lim - ini);
// Computer cluster mean.
double sum = 0.0;
for (int j=ini; j<lim; ++j) {
final double x = sample[j];
sum += x;
}
final double m = (sum / nb);
mean[i] = m;
// Compute cluster variance.
sum = 0.0;
for (int j=ini; j<lim; ++j) {
final double x = sample[j];
final double d = x - m;
sum += d * d;
}
final double v = ((nb > 1) ? (sum / (nb-1)) : 0.0);
var[i] = v;
}
}
/** (Re-)compute cluster brackets while holding cluster centers fixed. */
void maximization()
{
bracket[0] = 0;
for (int i=1; i<n; ++i) {
final double mlo = mean[i-1];
final double mhi = mean[i];
// Compute the dividing point between clusters (i-1) and (i).
int lo = bracket[i-1], hi = ns;
while (lo < (hi-1)) {
final int mid = (lo + hi) >> 1;
final double sam = sample[mid];
final double dlo = Math.abs(sam - mlo);
final double dhi = Math.abs(mhi - sam);
if (dlo < dhi) { lo = mid; } else { hi = mid; }
}
bracket[i] = hi;
}
bracket[n] = ns;
}
/** Compute a measure of total quantization error. */
double measure()
{
double sum = 0.0;
for (int i=0; i<n; ++i) {
final int ini = bracket[i];
final int lim = bracket[i+1];
final int nb = lim - ini;
final double v = var[i];
sum += v * (nb-1);
}
sum /= ns;
return sum;
}
/** Compute cluster weights. */
void computeWeights()
{
for (int i=0; i<n; ++i) {
final int ini = bracket[i];
final int lim = bracket[i+1];
final int siz = lim - ini;
final double wt = ((ns > 0) ? ((double) siz / (double) ns) : 0.0);
weight[i] = wt;
}
}
/** Print out the clustering configuration. */
void printMog(String label, int n, double weight[], double mean[], double var[])
{
BaseTestCase.println(label + ": n = " + n);
for (int i=0; i<n; ++i) {
BaseTestCase.println("(w, m, v) = (" +
weight[i] + ", " + mean[i] + ", " + var[i] + ")");
}
}
/** maximum number of Gaussian components */
public final static int max_n = 6;
/** actual number of Gaussian components */
public int n = 0;
/** weights associated with the Gaussian components */
public final double weight[] = new double[max_n];
/** mean parameters for the Gaussian components */
public final double mean[] = new double[max_n];
/** variance parameters for the Gaussian components */
public final double var[] = new double[max_n];
/** cluster brackets on the input samples */
protected int bracket[] = new int[max_n+1];
/** number of input samples */
protected int ns = 0;
/** array of input samples */
protected double sample[] = null;
/** minimum sample size per output cluster */
public static final int min_sample_size_per_cluster = 32;
}
|