1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
/*
* Derby - Class org.apache.derbyTesting.functionTests.tests.store.BTreeMaxScanTest
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific
* language governing permissions and limitations under the License.
*/
package org.apache.derbyTesting.functionTests.tests.store;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;
import junit.framework.Test;
import org.apache.derby.shared.common.sanity.SanityManager;
import org.apache.derbyTesting.junit.BaseJDBCTestCase;
import org.apache.derbyTesting.junit.CleanDatabaseTestSetup;
import org.apache.derbyTesting.junit.JDBC;
import org.apache.derbyTesting.junit.TestConfiguration;
/**
* Test cases for max queries that scan a B-tree index backwards (DERBY-642).
*/
public class BTreeMaxScanTest extends BaseJDBCTestCase {
/** List of SanityManager debug flags to reset on teardown. */
private List<String> traceFlags = new ArrayList<String>();
public BTreeMaxScanTest(String name) {
super(name);
}
/**
* Create a test suite with all the test cases in this class.
*/
public static Test suite() {
// This is a test for engine functionality, so skip client/server.
return new CleanDatabaseTestSetup(
TestConfiguration.embeddedSuite(BTreeMaxScanTest.class));
}
/**
* Tear down the test environment.
*/
protected void tearDown() throws Exception {
super.tearDown();
if (SanityManager.DEBUG) {
for (String flag : traceFlags) {
SanityManager.DEBUG_PRINT(
flag, "Disable tracing for " + getName());
SanityManager.DEBUG_CLEAR(flag);
}
}
}
// TESTS
/**
* Test that a max scan which cannot immediately lock the rightmost row
* in the index, restarts the scan when it wakes up to see if the row it
* waited for is still the maximum row. Tests
* BTreeMaxScan#positionAtStartPosition.
*/
public void testRestartScanAfterWaitOnMaxRow() throws Exception {
setAutoCommit(false);
// Populate a table with test data
Statement s = createStatement();
s.execute("create table t(x int, y int)");
PreparedStatement ins = prepareStatement("insert into t(x) values ?");
for (int i = 1; i <= 800; i++) {
ins.setInt(1, i);
ins.executeUpdate();
}
s.execute("create index i on t(x)");
commit();
// Make sure the rightmost row in the index is locked
s.execute("update t set y = 0 where x = 800");
Connection c2 = openDefaultConnection();
try {
c2.setAutoCommit(false);
Statement s2 = c2.createStatement();
// In a different thread, in a different transaction, start a max
// scan that will be blocked trying to lock the rightmost row.
Result r = asyncGetSingleResult(s2,
"select max(x) from t --derby-properties index=i");
// Give the other thread two seconds to start executing and hit
// the lock.
Thread.sleep(2000L);
// Now insert a row with a higher value, so that the row the other
// thread is waiting for is no longer the maximum row.
ins.setInt(1, 801);
ins.executeUpdate();
// Commit, release locks, and allow the other thread to continue.
commit();
// Now we expect the other thread to be able to continue. It should
// restart the scan because it couldn't lock the rightmost row, and
// it should therefore see the newly inserted value 801.
assertEquals("801", r.get());
} finally {
c2.rollback();
c2.close();
}
dropTable("T");
commit();
}
/**
* Test that scanners that work in opposite directions don't deadlock. The
* test case has two threads running B-tree forward scans in parallel with
* two threads running B-tree (backward) max scans.
*/
public void testOppositeScanDirections() throws Exception {
// Trace latch conflicts to see which parts of the repositioning code
// we exercise. This test case is supposed to test simple latch
// conflicts between forward scanners and backward scanners, and should
// result in "Couldn't get latch nowait, will retry" being written to
// derby.log when latch conflicts occur.
setTraceFlag("BTreeMaxScan.latchConflict");
setAutoCommit(false);
Statement s = createStatement();
s.execute("create table t(x int)");
// Insert a couple pages worth of rows, only the first 100 of them
// being non-null. The null values makes the max scan need to scan
// backwards across page boundaries to find a qualifying row.
PreparedStatement ins = prepareStatement("insert into t values ?");
final String[][] tableContents = new String[800][];
for (int i = 1; i <= tableContents.length; i++) {
String value = (i <= 100) ? Integer.toString(i) : null;
ins.setString(1, value);
ins.executeUpdate();
tableContents[i - 1] = new String[] { value };
}
s.execute("create index i on t(x)");
commit();
// Now start four threads. Two scanning the B-tree in the forward
// direction, and two scanning in the backward direction (max scans).
// These threads should not interfere with each other.
String forwardSQL = "select x from t --derby-properties index=i";
String backwardSQL = "select max(x) from t --derby-properties index=i";
final PreparedStatement[] pss = {
openDefaultConnection().prepareStatement(forwardSQL),
openDefaultConnection().prepareStatement(forwardSQL),
openDefaultConnection().prepareStatement(backwardSQL),
openDefaultConnection().prepareStatement(backwardSQL),
};
final Exception[] exceptions = new Exception[pss.length];
final Thread[] threads = new Thread[pss.length];
for (int i = 0; i < pss.length; i++) {
final int threadNo = i;
threads[i] = new Thread() {
public void run() {
// The forward scan is expected to return all rows in
// the table, the backward (max) scan only the highest
// non-null row.
String[][] expected = (threadNo < 2) ?
tableContents : new String[][] {{"100"}};
try {
for (int j = 0; j < 1000; j++) {
ResultSet rs = pss[threadNo].executeQuery();
JDBC.assertFullResultSet(rs, expected);
}
} catch (Exception e) {
exceptions[threadNo] = e;
}
}
};
threads[i].start();
}
for (int i = 0; i < pss.length; i++) {
threads[i].join();
pss[i].getConnection().close();
}
for (int i = 0; i < exceptions.length; i++) {
if (exceptions[i] != null) {
throw exceptions[i];
}
}
dropTable("T");
commit();
}
/**
* <p>
* Test that latch conflicts between forward scans and backward (max) scans
* are resolved without deadlocking or other errors when the rightmost
* leaf page of the B-tree is empty. In that case, the backward scan must
* restart, since it doesn't have any saved position to return to.
* </p>
*
* <p>
* The test is performed by running two threads that scan the leaves of
* the B-tree in the forward direction, while at the same time two threads
* do a backward max scan on the same B-tree. In parallel with the threads
* that scan the index, the main thread will repeatedly delete the rows
* with the highest values in order to create a window where the scans may
* see an empty page, sleep a little, and then re-insert the deleted rows.
* </p>
*/
public void testEmptyRightmostLeaf() throws Exception {
// Trace latch conflicts to see that we exercise the code path that
// handles repositioning after waiting for a latch when moving away
// from an empty leaf at the far-right end of the B-tree. When this
// code is exercised, we'll see "Restart scan from rightmost leaf"
// printed to derby.log.
setTraceFlag("BTreeMaxScan.latchConflict");
setAutoCommit(false);
Statement s = createStatement();
s.execute("create table t(x int)");
// Insert a couple pages worth of rows.
PreparedStatement ins = prepareStatement("insert into t values ?");
for (int i = 1; i <= 800; i++) {
ins.setInt(1, i);
ins.executeUpdate();
}
s.execute("create index i on t(x)");
commit();
// Now start four threads. Two scanning the B-tree in the forward
// direction, and two scanning in the backward direction (max scans).
// These threads should not interfere with each other.
String forwardSQL = "select x from t --derby-properties index=i";
String backwardSQL = "select max(x) from t --derby-properties index=i";
final PreparedStatement[] pss = {
openDefaultConnection().prepareStatement(forwardSQL),
openDefaultConnection().prepareStatement(forwardSQL),
openDefaultConnection().prepareStatement(backwardSQL),
openDefaultConnection().prepareStatement(backwardSQL),
};
final Exception[] exceptions = new Exception[pss.length];
final Thread[] threads = new Thread[pss.length];
final AtomicInt threadCount = new AtomicInt();
for (int i = 0; i < pss.length; i++) {
final int threadNo = i;
// Set the isolation level to read uncommitted so that the scans
// don't take any locks. We do this because we want to test latch
// conflicts, and if the scans take read locks, they'll spend most
// of the time waiting for the write thread to release its locks.
pss[i].getConnection().setTransactionIsolation(
Connection.TRANSACTION_READ_UNCOMMITTED);
threads[i] = new Thread() {
public void run() {
try {
for (int j = 0; j < 1000; j++) {
ResultSet rs = pss[threadNo].executeQuery();
if (threadNo < 2) {
// This is a full forward scan (SELECT *) of
// the B-tree, so expect it to see between 400
// and 800 rows.
int rowCount = JDBC.assertDrainResults(rs);
if (rowCount < 400 || rowCount > 800) {
fail("Unexpected row count: " + rowCount);
}
} else {
// This is a max scan, so expect a single
// row that contains a value between 400 and
// 800.
assertTrue(rs.next());
int max = rs.getInt(1);
if (max < 400 || max > 800) {
fail("Unexpected max value: " + max);
}
assertFalse(rs.next());
rs.close();
}
}
} catch (Exception e) {
exceptions[threadNo] = e;
} finally {
threadCount.decrement();
}
}
};
threads[i].start();
threadCount.increment();
}
// As long as the scanner threads are running, periodically delete
// and re-insert the last 400 rows. This empties the rightmost leaf
// page(s) and makes it possible for the scanners to encounter the
// situation where they need to reposition after a latch conflict
// while being positioned on an empty page with no saved position. The
// post-commit worker will eventually remove the pointers to the empty
// leaf, so we need to do this repeatedly and hope that the timing
// will be right at least once so that we exercise the desired path.
PreparedStatement deleteRows =
prepareStatement("delete from t where x > 400");
PreparedStatement insertRows =
prepareStatement("insert into t select x+400 from t");
while (threadCount.get() > 0) {
// Delete rows in range [401, 800].
assertEquals("deleted rows", 400, deleteRows.executeUpdate());
commit();
// Sleep a little while so that we don't fill the empty page
// before the scanners have seen it.
Thread.sleep(100L);
// Re-insert rows in range [401, 800].
assertEquals("inserted rows", 400, insertRows.executeUpdate());
commit();
}
for (int i = 0; i < pss.length; i++) {
threads[i].join();
pss[i].getConnection().close();
}
for (int i = 0; i < exceptions.length; i++) {
if (exceptions[i] != null) {
throw exceptions[i];
}
}
dropTable("T");
commit();
}
/**
* <p>
* Test that B-tree max scans reposition correctly after waiting for a
* lock on the last row and detect any new max value inserted while the
* scan was waiting for the lock.
* </p>
*
* <p>
* <b>Note:</b> Currently, B-tree max scans always take a table lock when
* running with serializable isolation level, so the scans in this test
* case will not actually be blocked waiting for a row lock. The test case
* is added to verify that the scans behave correctly if the lock mode is
* changed in the future.
* </p>
*/
public void testSerializable() throws Exception {
setAutoCommit(false);
getConnection().
setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
Statement s = createStatement();
s.execute("create table t(x int, y int)");
s.execute("insert into t(x) values 0,1,2,3,4,null,null,null");
s.execute("create index i on t(x)");
PreparedStatement ps = prepareStatement(
"select max(x) from t --derby-properties index=i");
JDBC.assertSingleValueResultSet(ps.executeQuery(), "4");
commit();
// Set up another transaction that holds an exclusive lock on the
// row with the max value.
final Connection c2 = openDefaultConnection();
final Statement s2 = c2.createStatement();
c2.setAutoCommit(false);
s2.execute("update t set y = x where x = 4");
final Exception[] exception = new Exception[1];
Thread t = new Thread() {
public void run() {
try {
// Wait a little while so that the main thread gets time
// to start the scan and get blocked by the lock on the
// highest row.
Thread.sleep(1000L);
// While the main thread is still blocked, insert a new
// max value.
s2.execute("insert into t(x) values 5");
// Commit, release the locks, and let the main thread
// continue.
c2.commit();
} catch (Exception sqle) {
exception[0] = sqle;
}
}
};
t.start();
// The two max scans should return the same value since they are
// in the same transaction and the isolation level is serializable.
// The first scan will be blocked by the lock held by the other
// transaction. When it wakes up, it should see the newly inserted
// row.
JDBC.assertSingleValueResultSet(ps.executeQuery(), "5");
JDBC.assertSingleValueResultSet(ps.executeQuery(), "5");
commit();
t.join();
s2.close();
c2.rollback();
c2.close();
// Did the other thread fail?
if (exception[0] != null) {
throw exception[0];
}
dropTable("T");
commit();
}
// HELPER METHODS
/**
* This class represents a result from an asynchronous operation.
*/
private static class Result {
private boolean complete;
private Exception ex;
private String value;
synchronized void error(Exception ex) {
this.ex = ex;
this.complete = true;
notifyAll();
}
synchronized void set(String value) {
this.value = value;
this.complete = true;
notifyAll();
}
synchronized String get() throws Exception {
while (!complete) {
wait();
}
if (ex != null) {
throw ex;
} else {
return value;
}
}
}
/**
* Execute a statement asynchronously and return an object that can be
* used to retrieve the result once the statement is complete. The
* statement should return a single value.
*
* @param s the statement object to use for execution
* @param sql the SQL to execute
* @return a {@code Result} object that allows retrieval of the result
* once it's available
*/
private static Result asyncGetSingleResult(
final Statement s, final String sql) {
final Result result = new Result();
Thread t = new Thread() {
public void run() {
try {
ResultSet rs = s.executeQuery(sql);
assertEquals("expected single value",
1, rs.getMetaData().getColumnCount());
assertTrue("empty result", rs.next());
String val = rs.getString(1);
assertFalse("multiple rows", rs.next());
rs.close();
result.set(val);
} catch (Exception e) {
result.error(e);
}
}
};
t.start();
return result;
}
/**
* If running with a debug build and derby.tests.trace is true, enable
* tracing for messages with the specified flag.
*
* @param flag the debug flag to enable
*/
private void setTraceFlag(String flag) {
if (SanityManager.DEBUG && TestConfiguration.getCurrent().doTrace()) {
SanityManager.DEBUG_PRINT(flag, "Enable tracing for " + getName());
SanityManager.DEBUG_SET(flag);
traceFlags.add(flag);
}
}
/**
* Poor man's replacement for java.util.concurrent.atomic.AtomicInteger
* that runs on platforms where java.util.concurrent isn't available.
*/
private static class AtomicInt {
private int i;
synchronized void increment() {
i++;
}
synchronized void decrement() {
i--;
}
synchronized int get() {
return i;
}
}
}
|