File: IndexSplitDeadlockTest.java

package info (click to toggle)
derby 10.14.2.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 79,056 kB
  • sloc: java: 691,961; sql: 42,686; xml: 20,512; sh: 3,373; sed: 96; makefile: 60
file content (852 lines) | stat: -rw-r--r-- 34,932 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
/*
 * Derby - Class org.apache.derbyTesting.functionTests.tests.store.IndexSplitDeadlockTest
 *
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied. See the License for the specific
 * language governing permissions and limitations under the License.
 */

package org.apache.derbyTesting.functionTests.tests.store;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;
import junit.framework.Test;
import org.apache.derbyTesting.functionTests.util.Barrier;
import org.apache.derbyTesting.junit.BaseJDBCTestCase;
import org.apache.derbyTesting.junit.CleanDatabaseTestSetup;
import org.apache.derbyTesting.junit.DatabasePropertyTestSetup;
import org.apache.derbyTesting.junit.JDBC;
import org.apache.derbyTesting.junit.TestConfiguration;

/**
 * Test that executes the code paths changed by the fix for the index split
 * deadlock (DERBY-2991). The main purpose is to test that index scans are
 * able to reposition in cases where they release the latch on the leaf page
 * on which they are positioned (typically because they had to wait for a
 * lock, or because they returned control to the caller after fetching a
 * bulk of rows).
 */
public class IndexSplitDeadlockTest extends BaseJDBCTestCase {

    /**
     * List of threads (AsyncThread objects) to wait for after running the test.
     */
    private List<AsyncThread> threads = new ArrayList<AsyncThread>();

    public IndexSplitDeadlockTest(String name) {
        super(name);
    }

    public static Test suite() {
        Test test = TestConfiguration.embeddedSuite(
                IndexSplitDeadlockTest.class);

        // DERBY-4273: Include the lock table in the error message to help
        // debugging in case of lock timeouts.
        test = DatabasePropertyTestSetup.singleProperty(
                test, "derby.locks.deadlockTrace", "true");

        test = new CleanDatabaseTestSetup(test);
        return test;
    }

    protected void tearDown() throws Exception {
        // Rollback all uncommitted operations so that we don't hold any
        // locks that may block the other threads.
        rollback();
        for (AsyncThread thread : threads) {
            thread.waitFor();
        }
        threads = null;

        // All the other threads have finished. Now, remove everything from
        // the APP schema so that we don't leave anything around for subsequent
        // tests.
        setAutoCommit(false); // required by JDBC.dropSchema()
        JDBC.dropSchema(getConnection().getMetaData(), "APP");

        super.tearDown();
    }

    // --------------------------------------------------------------------
    // Test cases for calls to BTreeScan.reposition() in BTreeMaxScan
    // --------------------------------------------------------------------

    // NOTE: There is a call in fetchMax() that cannot be reached because the
    // scan state is alway SCAN_INIT when that method is called, and it only
    // calls reposition() if the scan state is SCAN_INPROGRESS. Therefore,
    // there's no test case for fetchMax().

    public void testBTreeMaxScan_fetchMaxRowFromBeginning() throws Exception {
        setAutoCommit(false);

        Statement s = createStatement();
        s.executeUpdate("create table max_scan(x int)");
        s.executeUpdate("create index idx on max_scan(x)");

        // We need to make sure that we have at least two leaf pages. Each
        // 4K index page can hold ~200 rows.
        PreparedStatement ins = prepareStatement(
                "insert into max_scan values ?");
        for (int i = 0; i < 500; i++) {
            ins.setInt(1, i * 2);
            ins.executeUpdate();
        }
        commit();

        // Now make sure that the right-most leaf is empty, so that we must
        // fetch the max value from the beginning.
        s.executeUpdate("delete from max_scan where x > 50");

        // Obtain lock in another thread to block scans. Release lock after
        // two seconds.
        obstruct("update max_scan set x = x where x = 10", 2000);

        // Give the other thread time to obtain the lock.
        Thread.sleep(1000);

        // Perform a max scan (from beginning because last page is empty).
        // Will force repositioning because we must wait for the lock and
        // release the latch.
        JDBC.assertSingleValueResultSet(s.executeQuery(
                "select max(x) from max_scan --DERBY-PROPERTIES index=IDX"),
                "50");
    }

    // --------------------------------------------------------------------
    // Test cases for calls to BTreeScan.reposition() in BTreeForwardScan
    // --------------------------------------------------------------------

    /**
     * Test first call to reposition() in BTreeForwardScan.fetchRows().
     * This call happens when a new batch of rows is requested from a scan
     * that's in progress.
     */
    public void testBTreeForwardScan_fetchRows_resumeAfterSplit()
            throws SQLException {

        // Create a table and an index and populate them
        Statement s = createStatement();
        s.executeUpdate("create table t (x int)");
        s.executeUpdate("create index idx on t(x)");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 400; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }

        // Start an index scan and fetch some rows so that it's in the
        // INPROGRESS state. Just fetch a small number of rows so that we
        // are still positioned on the left-most leaf page.
        ResultSet rs = s.executeQuery(
                "select * from t --DERBY-PROPERTIES index=IDX");
        for (int i = 0; i < 30; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }

        // In another transaction, insert values smaller than the values
        // currently in the index. This causes a split of the left-most leaf.
        // Before DERBY-2991 we'd get a lock timeout here.
        Connection c2 = openDefaultConnection();
        Statement s2 = c2.createStatement();
        for (int i = 0; i < 300; i++) {
            s2.executeUpdate("insert into t values -1");
        }
        s2.close();
        c2.close();

        // Continue the index scan. This will trigger a full repositioning
        // from the root of the B-tree since the page on which we were
        // positioned has been split.
        for (int i = 30; i < 400; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        assertFalse(rs.next());
        rs.close();
    }

    /**
     * Test that we can reposition on a holdable cursor after a commit and
     * a split on the leaf page of the current position. This tests the
     * second call to reposition() in BTreeForwardScan.fetchRows().
     */
    public void testBTreeForwardScan_fetchRows_resumeScanAfterCommitAndSplit()
            throws SQLException {

        setAutoCommit(false);

        // Create a table and an index and populate them
        Statement s1 = createStatement();
        s1.executeUpdate("create table t (x int)");
        s1.executeUpdate("create index idx on t(x)");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 1000; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Start an index scan with a holdable cursor, and fetch some rows
        // to move the position to the middle of the index.
        assertEquals("This test must use a holdable cursor",
                     ResultSet.HOLD_CURSORS_OVER_COMMIT,
                     s1.getResultSetHoldability());
        ResultSet rs = s1.executeQuery(
                "select * from t --DERBY-PROPERTIES index=IDX");
        for (int i = 0; i < 500; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        commit();

        // Insert rows right before the one we're positioned on in order to
        // split that page.
        Statement s2 = createStatement();
        for (int i = 0; i < 300; i++) {
            s2.executeUpdate("insert into t values 498");
        }

        // Check that the index scan can continue where we left it, even
        // though we committed and released the latches.
        for (int i = 500; i < 1000; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        assertFalse(rs.next());
        rs.close();

    }

    /**
     * Test that we can reposition on a holdable cursor after a commit and
     * a compress that removes the leaf page of the current position. This
     * tests the second call to reposition() in BTreeForwardScan.fetchRows().
     */
    public void testBTreeForwardScan_fetchRows_resumeScanAfterCompress()
            throws Exception {

        setAutoCommit(false);

        // Create a table and an index and populate them
        Statement s1 = createStatement();
        s1.executeUpdate("create table t (x int)");
        s1.executeUpdate("create index idx on t(x)");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 1000; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Start an index scan with a holdable cursor, and fetch some rows
        // to move the position to the middle of the index.
        assertEquals("This test must use a holdable cursor",
                     ResultSet.HOLD_CURSORS_OVER_COMMIT,
                     s1.getResultSetHoldability());
        ResultSet rs = s1.executeQuery(
                "select * from t --DERBY-PROPERTIES index=IDX");
        for (int i = 0; i < 500; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        commit();

        // Delete all rows and compress the table so that the leaf page on
        // which the result set is positioned disappears.
        Statement s2 = createStatement();
        s2.executeUpdate("delete from t");
        commit();
        // Sleep for a little while, otherwise SYSCS_INPLACE_COMPRESS_TABLE
        // doesn't free any space in the index (waiting for the background
        // thread to perform post-commit work?)
        Thread.sleep(1000);
        s2.execute("call syscs_util.syscs_inplace_compress_table" +
                   "('APP','T',1,1,1)");
        commit();

        // Check that we are able to reposition. We may or may not see more
        // rows, since some rows may still be available in the cache in the
        // result set. The point of the code below is to see that calls to
        // ResultSet.next() don't fail when the page has disappeared, not to
        // test how many of the deleted rows are returned.
        int expected = 500;
        while (rs.next()) {
            assertTrue(expected < 1000);
            assertEquals(expected, rs.getInt(1));
            expected++;
        }
        rs.close();
    }

    /**
     * Test that BTreeForwardScan.fetchRows() can reposition after releasing
     * latches because it had to wait for a lock. This tests the third call
     * to reposition() in fetchRows(), which is only called if the index is
     * unique.
     */
    public void testBTreeForwardScan_fetchRows_resumeAfterWait_unique()
            throws Exception {
        setAutoCommit(false);

        // Populate a table with a unique index
        Statement s = createStatement();
        s.executeUpdate("create table t (x int, constraint c primary key(x))");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 300; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Hold a lock in a different thread to stop the index scan
        obstruct("delete from t where x = 100", 2000);

        // Give the other thread time to obtain the lock
        Thread.sleep(1000);

        // Perform an index scan. Will be blocked for a while when fetching
        // the row where x=100, but should be able to resume the scan.
        ResultSet rs = s.executeQuery(
                "select * from t --DERBY-PROPERTIES constraint=C");
        for (int i = 0; i < 300; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        assertFalse(rs.next());
        rs.close();
    }

    /**
     * Test that BTreeForwardScan.fetchRows() can reposition after releasing
     * latches because it had to wait for a lock, and the leaf page on which
     * the scan is positioned has been split. This tests the third call
     * to reposition() in fetchRows(), which is only called if the index is
     * unique.
     */
    public void testBTreeForwardScan_fetchRows_resumeAfterWait_unique_split()
            throws Exception {
        setAutoCommit(false);

        // Populate a table with a unique index
        Statement s = createStatement();
        s.executeUpdate("create table t (x int, constraint c primary key(x))");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 300; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Object used for synchronization between the main thread and the
        // helper thread. The main thread uses it to tell the helper thread
        // that it has started the index scan. The helper thread uses it
        // to tell the main thread that it has locked row 40 and is ready to
        // insert more values. Both threads should wait until the other thread
        // has reached the barrier before continuing.
        final Barrier barrier = new Barrier(2);

        // Lock a row on the first page in a different thread to stop the
        // index scan. Then split the first leaf by inserting many values
        // less than zero.
        new AsyncThread(new AsyncTask() {
            public void doWork(Connection conn) throws Exception {
                conn.setAutoCommit(false);
                Statement s = conn.createStatement();
                s.executeUpdate("update t set x = x where x = 40");
                s.close();

                // Tell the main thread that we've locked the row and that
                // it can go ahead with the index scan. Wait here until the
                // main thread has started the scan.
                barrier.await();

                // The main thread has started the index scan. Give it a
                // second to get to the row we have locked.
                Thread.sleep(1000L);

                // Split the first leaf
                PreparedStatement ps = conn.prepareStatement(
                        "insert into t values ?");
                for (int i = -1; i > -300; i--) {
                    ps.setInt(1, i);
                    ps.executeUpdate();
                }
                ps.close();
                conn.commit();
            }
        });

        // Prepare the index scan.
        ResultSet rs = s.executeQuery(
                "select * from t --DERBY-PROPERTIES constraint=C");

        // Perform an index scan. Will be blocked for a while when fetching
        // the row where x=40, but should be able to resume the scan.
        for (int i = 0; i < 300; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));

            // Once we have fetched the first row, tell the helper thread we
            // have started the index scan, and wait until it has locked the
            // row that should block the scan (x=40).
            if (i == 0) {
                barrier.await();
            }
        }
        assertFalse(rs.next());
        rs.close();
    }

    /**
     * Test that BTreeForwardScan.fetchRows() can reposition after releasing
     * latches because it had to wait for a lock. This tests the fourth call
     * to reposition() in fetchRows(), which is only called if the index is
     * non-unique.
     */
    public void testBTreeForwardScan_fetchRows_resumeAfterWait_nonUnique()
            throws Exception {
        setAutoCommit(false);

        // Populate a table with a non-unique index
        Statement s = createStatement();
        s.executeUpdate("create table t (x int)");
        s.executeUpdate("create index idx on t(x)");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 300; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Hold a lock in a different thread to stop the index scan
        obstruct("delete from t where x = 100", 2000);

        // Give the other thread time to obtain the lock
        Thread.sleep(1000);

        // Perform an index scan. Will be blocked for a while when fetching
        // the row where x=100, but should be able to resume the scan.
        ResultSet rs = s.executeQuery(
                "select * from t --DERBY-PROPERTIES index=IDX");
        for (int i = 0; i < 300; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));
        }
        assertFalse(rs.next());
        rs.close();
    }

    /**
     * Test that BTreeForwardScan.fetchRows() can reposition after releasing
     * latches because it had to wait for a lock, and the leaf page on which
     * the scan is positioned has been split. This tests the fourth call
     * to reposition() in fetchRows(), which is only called if the index is
     * non-unique.
     */
    public void testBTreeForwardScan_fetchRows_resumeAfterWait_nonUnique_split()
            throws Exception {
        setAutoCommit(false);

        // Populate a table with a non-unique index
        Statement s = createStatement();
        s.executeUpdate("create table t (x int)");
        s.executeUpdate("create index idx on t(x)");
        PreparedStatement ins = prepareStatement("insert into t values ?");
        for (int i = 0; i < 300; i++) {
            ins.setInt(1, i);
            ins.executeUpdate();
        }
        commit();

        // Object used for synchronization between main thread and helper
        // thread. They should both wait for the other thread to reach the
        // barrier point before continuing.
        final Barrier barrier = new Barrier(2);

        // Hold a lock in a different thread to stop the index scan, then
        // split the first leaf (on which the scan is positioned) before the
        // lock is released.
        new AsyncThread(new AsyncTask() {
            public void doWork(Connection conn) throws Exception {
                conn.setAutoCommit(false);
                Statement s = conn.createStatement();
                s.executeUpdate("update t set x = x where x = 40");

                // Tell the main thread we have locked the row, and wait for
                // it to start the index scan.
                barrier.await();

                // Give the index scan time to get to the row we have locked.
                Thread.sleep(1000);

                // The index scan should be blocked now. Split the first leaf
                // by inserting more values just before the lowest key, so
                // that we can verify that the index scan is able to reposition
                // correctly after a page split.
                for (int i = 0; i < 300; i++) {
                    s.executeUpdate("insert into t values -1");
                }
                s.close();
                conn.commit();
            }
        });

        // Perform an index scan. Will be blocked for a while when fetching
        // the row where x=40, but should be able to resume the scan after
        // the helper thread commits and releases its locks.
        ResultSet rs = s.executeQuery(
                "select * from t --DERBY-PROPERTIES index=IDX");

        for (int i = 0; i < 300; i++) {
            assertTrue(rs.next());
            assertEquals(i, rs.getInt(1));

            // Once we have fetched the first row, tell the helper thread we
            // have started the index scan, and wait until it has locked the
            // row that should block the scan (x=40).
            if (i == 0) {
                barrier.await();
            }
        }
        assertFalse(rs.next());
        rs.close();
    }

    // --------------------------------------------------------------------
    // Test cases for calls to BTreeScan.reposition() in BTreeScan
    // --------------------------------------------------------------------

    // There's a call to reposition() from positionAtDoneScanFromClose(), but
    // I'm not sure how to reach it. According to the code coverage reports
    // there's no other tests that reach that call to reposition().
    //
    // Not testing the first call to reposition() in delete() since it will
    // be exercised by all code that deletes or modifies index rows, so it's
    // already exercised by other tests. The existing tests do not make the
    // this call do a full repositioning from the root of the B-tree, but
    // this is very difficult to test because a page split needs to happen in
    // the very short window between the scan releases the latch and delete()
    // reobtains the latch.
    //
    // The other call to reposition() in delete() is only used if
    // init_useUpdateLocks is true. No other tests reach that call, according
    // to the code coverage reports, and I'm not sure how/if it can be
    // reached from the public API. Leaving it untested for now.
    //
    // There's a call to reposition() in BTreeScan.doesCurrentPositionQualify()
    // too. The only caller (except test code bypassing the public API) is
    // TableScanResultSet.getCurrentRow(), which is only called from trigger
    // code (for before and after result sets) and CurrentOfResultSets. It
    // doesn't look like these will ever use a TableScanResultSet wrapping a
    // index scan, so there's no test for this method here. (The method is
    // exercised from T_b2i by using the internal API directly.)
    //
    // Same comment as above goes for BTreeScan.isCurrentPositionDeleted(), as
    // it is used the same places as doesCurrentPositionQualify().
    //
    // The call to reposition() from BTreeScan.fetch() is also hard to reach.
    // It can be reached from getConstraintDescriptorViaIndex(), which is
    // frequently exercised by other tests, so I'm not adding a test case here.
    // In order to test repositioning after a split in this method, we should
    // rather have a test case calls the internal API directly (e.g., in
    // T_b2i).
    //
    // Similarly, BTreeScan.reopenScan() has a call to reposition() that's
    // exercised frequently by other tests, but to test a split right before
    // the repositioning, we'd probably need to use the internal API for that
    // method too.

    // --------------------------------------------------------------------
    // Test cases for bugs related to saving position and repositioning
    // --------------------------------------------------------------------

    /**
     * Test that a max scan works when it needs to wait more than once in order
     * to lock the last record in the index. This used to cause an assert
     * failure in sane builds before DERBY-4193.
     */
    public void testMultipleLastKeyWaitsInMaxScan() throws Exception {
        setAutoCommit(false);

        // Create a table with an index and a couple of rows.
        Statement s = createStatement();
        s.execute("create table max_scan(x int, y int)");
        s.execute("create index idx on max_scan(x)");
        s.execute("insert into max_scan(x) values 1,2,3");
        commit();

        // Start a thread that (1) obtains an exclusive lock on the last
        // row, (2) waits for the main thread to perform a max scan that will
        // be blocked by the lock, (3) inserts values greater than the current
        // max so that the main thread needs to rescan when it wakes up, (4)
        // commit to allow the main thread to continue, and (5) immediately
        // insert more rows greater than the previous max so that the main
        // thread is likely to have to wait for a lock a second time.
        new AsyncThread(new AsyncTask() {
            public void doWork(Connection conn) throws Exception {
                conn.setAutoCommit(false);
                Statement s = conn.createStatement();
                s.execute("update max_scan set y = x where x = 3");
                s.close();

                // Give the main thread time to start executing select max(x)
                // and wait for the lock.
                Thread.sleep(2000);

                // Insert rows greater than the current max.
                PreparedStatement ps = conn.prepareStatement(
                        "insert into max_scan(x) values 4");
                for (int i = 0; i < 300; i++) {
                    ps.execute();
                }

                // Commit and release locks to allow the main thread to
                // continue.
                conn.commit();

                // Insert some more rows so that the main thread is likely to
                // have to wait again. Note that there is a possibility that
                // the main thread manages to obtain the lock on the last row
                // before we manage to insert a new row, in which case it
                // won't have to wait for us and we're not actually testing
                // a max scan that needs to wait more than once to lock the
                // last row.
                for (int i = 0; i < 300; i++) {
                    ps.execute();
                }

                // Block for a while before releasing locks, so that the main
                // thread will have to wait if it didn't obtain the lock on the
                // last row before we did.
                Thread.sleep(500);
                conn.commit();

                ps.close();
            }
        });

        // Give the other thread a little while to start and obtain the
        // lock on the last record. We expect two locks in the lock table
        // when the other thread is ready. Don't wait more than a minute
        // as something must have gone wrong.
        int totalWait = 0;
        do {
            totalWait += 500;
            Thread.sleep(500);
        } while (numlocks() < 2 && totalWait < 60000);
        // The last record should be locked now, so this call will have to
        // wait initially. This statement used to cause an assert failure in
        // debug builds before DERBY-4193.
        JDBC.assertSingleValueResultSet(
                s.executeQuery("select max(x) from max_scan " +
                               "--DERBY-PROPERTIES index=IDX"),
                "4");
    }

    /**
     * Get the number of locks in the lock table 
     * @return number of locks
     * @throws SQLException
     */
    private int numlocks() throws SQLException {
        Statement s = createStatement();
        ResultSet rs = s.executeQuery("SELECT count(*) from syscs_diag.lock_table");
        rs.next();
        int num = rs.getInt(1);
        rs.close();
        return num;
    }
    
    /**
     * Test that a forward scan works even in the case that it has to wait
     * for the previous key lock more than once. This used to cause an assert
     * failure in sane builds before DERBY-4193.
     */
    public void testMultiplePrevKeyWaitsInForwardScan() throws Exception {
        setAutoCommit(false);

        // Isolation level should be serializable so that the scan needs
        // a previous key lock.
        getConnection().setTransactionIsolation(
                Connection.TRANSACTION_SERIALIZABLE);

        // Create a table with an index and a couple of rows.
        Statement s = createStatement();
        s.execute("create table fw_scan(x int)");
        s.execute("create index idx on fw_scan(x)");
        s.execute("insert into fw_scan(x) values 100,200,300");
        commit();

        new AsyncThread(new AsyncTask() {
            public void doWork(Connection conn) throws Exception {
                conn.setAutoCommit(false);
                PreparedStatement ps =
                        conn.prepareStatement("insert into fw_scan values 1");

                // Insert one row right before the first row to be returned
                // by the scan. This will be the previous key that the scan
                // will attempt to lock. Wait for two seconds to allow the
                // scan to start and attempt to lock the record.
                ps.execute();
                Thread.sleep(2000);

                // Before we commit and release the lock, insert more rows
                // between the locked row and the first row of the scan, so
                // that another row holds the previous key for the scan when
                // it wakes up.
                for (int i = 0; i < 300; i++) {
                    ps.execute();
                }
                conn.commit();

                // The scan will wake up and try to lock the row that has
                // now become the row immediately to the left of its starting
                // position. Try to beat it to it so that it has to wait a
                // second time in order to obtain the previous key lock. This
                // used to trigger an assert failure in the scan before
                // DERBY-4193.
                for (int i = 0; i < 300; i++) {
                    ps.execute();
                }

                // Wait a little while to give the scan enough time to wake
                // up and make another attempt to lock the previous key before
                // we release the locks.
                Thread.sleep(500);
                conn.rollback();
                ps.close();
            }
        });

        // Give the other thread a second to start and obtain a lock that
        // blocks the scan.
        Thread.sleep(1000);

        // The key to the left of the first key to be returned by the scan
        // should be locked now. This call will have to wait for the previous
        // key lock at least once. If it has to wait a second time (dependent
        // on the exact timing between this thread and the other thread) the
        // assert error from DERBY-4193 will be exposed.
        JDBC.assertSingleValueResultSet(
                s.executeQuery("select x from fw_scan " +
                               "--DERBY-PROPERTIES index=IDX\n" +
                               "where x >= 100 and x < 200"),
                "100");
    }

    // --------------------------------------------------------------------
    // Helpers
    // --------------------------------------------------------------------

    /**
     * <p>
     * In a separate thread, and in a separate transaction, execute the
     * SQL text and wait for the specified period of time, before the
     * transaction is rolled back. This method can be used to hold locks
     * and thereby block the main thread for a certain amount of time.
     * </p>
     *
     * <p>
     * If an exception is thrown while executing the SQL, the exception is
     * stored and rethrown from the tearDown() method in the main execution
     * thread, so that it is detected by the JUnit framework.
     * </p>
     *
     * @param sql the SQL text to execute
     * @param blockMillis how many milliseconds to wait until the transaction
     * is rolled back
     */
    private void obstruct(final String sql, final long blockMillis) {
        AsyncTask task = new AsyncTask() {
            public void doWork(Connection conn) throws Exception {
                conn.setAutoCommit(false);
                Statement s = conn.createStatement();
                s.execute(sql);
                s.close();
                Thread.sleep(blockMillis);
            }
        };
        new AsyncThread(task);
    }

    /**
     * Interface that should be implemented by classes that define a
     * database task that is to be executed asynchronously in a separate
     * transaction.
     */
    private static interface AsyncTask {
        void doWork(Connection conn) throws Exception;
    }

    /**
     * Class that executes an {@code AsyncTask} object.
     */
    private class AsyncThread implements Runnable {

        private final Thread thread = new Thread(this);
        private final AsyncTask task;
        private Exception error;

        /**
         * Create an {@code AsyncThread} object and starts a thread executing
         * the task. Also put the {@code AsyncThread} object in the list of
         * threads in the parent object to make sure the thread is waited for
         * and its errors detected in the {@code tearDown()} method.
         *
         * @param task the task to perform
         */
        public AsyncThread(AsyncTask task) {
            this.task = task;
            thread.start();
            threads.add(this);
        }

        /**
         * Open a database connection and perform the task. Roll back the
         * transaction when finished. Any exception thrown will be caught and
         * rethrown when the {@code waitFor()} method is called.
         */
        public void run() {
            try {
                Connection conn = openDefaultConnection();
                try {
                    task.doWork(conn);
                } finally {
                    JDBC.cleanup(conn);
                }
            } catch (Exception e) {
                error = e;
            }
        }

        /**
         * Wait for the thread to complete. If an error was thrown during
         * execution, rethrow the execption here.
         * @throws Exception if an error happened while performing the task
         */
        void waitFor() throws Exception {
            thread.join();
            if (error != null) {
                throw error;
            }
        }
    }
}