File: editor_object_lighting.cpp

package info (click to toggle)
descent3 1.5.0%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 35,256 kB
  • sloc: cpp: 416,147; ansic: 3,233; sh: 10; makefile: 8
file content (1012 lines) | stat: -rw-r--r-- 30,785 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
/*
 * Descent 3
 * Copyright (C) 2024 Parallax Software
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <algorithm>

#include "3d.h"
#include "gametexture.h"
#include "editor_lighting.h"
#include "room.h"
#include "lightmap.h"
#include "polymodel.h"
#include <string.h>
#include <stdlib.h>
#include "radiosity.h"
#include "lightmap_info.h"
#include "object_lighting.h"
#include "mem.h"

void ComputeObjectSurfaceRes(rad_surface *surf, object *obj, int subnum, int facenum) {
  int i;
  float left = 1.1f, right = -1, top = 1.1f, bottom = -1;
  lightmap_object_face *lfp = &obj->lm_object.lightmap_faces[subnum][facenum];
  int lw = lmi_w(lfp->lmi_handle);
  int lh = lmi_h(lfp->lmi_handle);

  for (i = 0; i < lfp->num_verts; i++) {
    if (lfp->u2[i] < left)
      left = lfp->u2[i];
    if (lfp->u2[i] > right)
      right = lfp->u2[i];
    if (lfp->v2[i] < top)
      top = lfp->v2[i];
    if (lfp->v2[i] > bottom)
      bottom = lfp->v2[i];
  }

  float left_result = (left * lw) + .0001;
  float right_result = (right * lw) + .0001;
  float top_result = (top * lh) + .0001;
  float bottom_result = (bottom * lh) + .0001;

  surf->x1 = floor(left_result);
  surf->x2 = floor(right_result);

  surf->y1 = floor(top_result);
  surf->y2 = floor(bottom_result);

  surf->xresolution = (surf->x2 - surf->x1);
  surf->yresolution = (surf->y2 - surf->y1);

  // Adjust for a accuracy errors
  if (((right_result) - (float)surf->x2) > .005)
    surf->xresolution++;

  if (((bottom_result) - (float)surf->y2) > .005)
    surf->yresolution++;

  if (((top_result) - (float)surf->y1) > .99)
    surf->y1++;

  if (((left_result) - (float)surf->x1) > .99)
    surf->x1++;
}

void ApplyLightmapToObjectSurface(object *obj, int subnum, int facenum, rad_surface *sp) {
  lightmap_object_face *fp = &obj->lm_object.lightmap_faces[subnum][facenum];
  int i, t, lmi_handle;
  int xres, yres;
  int lw, lh;
  int x1 = sp->x1;
  int y1 = sp->y1;

  xres = sp->xresolution;
  yres = sp->yresolution;

  ASSERT(fp->lmi_handle != BAD_LMI_INDEX);
  lmi_handle = fp->lmi_handle;

  lw = lmi_w(lmi_handle);
  lh = lmi_h(lmi_handle);

  ASSERT((xres + x1) <= lw);
  ASSERT((yres + y1) <= lh);

  ASSERT(lw >= 2);
  ASSERT(lh >= 2);

  uint16_t *dest_data = lm_data(LightmapInfo[lmi_handle].lm_handle);

  for (i = 0; i < yres; i++) {
    for (t = 0; t < xres; t++) {
      if (!(sp->elements[i * xres + t].flags & EF_IGNORE)) {
        ddgr_color color = GR_16_TO_COLOR(dest_data[(i + y1) * lw + (t + x1)]);
        int red = GR_COLOR_RED(color);
        int green = GR_COLOR_GREEN(color);
        int blue = GR_COLOR_BLUE(color);

        float fr, fg, fb;

        if (!(dest_data[(i + y1) * lw + (t + x1)] & OPAQUE_FLAG)) {
          red = green = blue = 0;
        }

        fr = std::min(1.0f, sp->elements[i * xres + t].exitance.r + Ambient_red);
        fg = std::min(1.0f, sp->elements[i * xres + t].exitance.g + Ambient_green);
        fb = std::min(1.0f, sp->elements[i * xres + t].exitance.b + Ambient_blue);

        fr = (fr * 255) + .5;
        fg = (fg * 255) + .5;
        fb = (fb * 255) + .5;

        red += (int)fr;
        green += (int)fg;
        blue += (int)fb;

        if (dest_data[(i + y1) * lw + (t + x1)] & OPAQUE_FLAG) {

          red /= 2;
          green /= 2;
          blue /= 2;
        }

        red = std::min(red, 255);
        green = std::min(green, 255);
        blue = std::min(blue, 255);

        dest_data[(i + y1) * lw + (t + x1)] = OPAQUE_FLAG | GR_RGB16(red, green, blue);
      }
    }
  }
}

void GetPointInObjectSpace(vector *dest, vector *pos, object *obj, int subnum, int world) {
  poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
  bsp_info *sm = &pm->submodel[subnum];
  float normalized_time[MAX_SUBOBJECTS];
  int i;
  int rotate_list[MAX_SUBOBJECTS];
  int num_to_rotate = 0;

  if (!pm->new_style)
    return;

  for (i = 0; i < MAX_SUBOBJECTS; i++)
    normalized_time[i] = 0.0;

  SetModelAnglesAndPos(pm, normalized_time);

  vector pnt = *pos;
  int mn = subnum;
  vector tpnt;
  matrix m;

  while (mn != -1) {
    rotate_list[num_to_rotate] = mn;
    num_to_rotate++;
    mn = pm->submodel[mn].parent;
  }

  // Subtract and rotate position
  if (world)
    tpnt = pnt - obj->pos;
  else
    tpnt = pnt;

  pnt = tpnt * obj->orient;

  for (i = num_to_rotate - 1; i >= 0; i--) {
    // Subtract and rotate position for this submodel
    mn = rotate_list[i];

    if (world)
      tpnt = pnt - pm->submodel[mn].offset;
    else
      tpnt = pnt;

    vm_AnglesToMatrix(&m, pm->submodel[mn].angs.p, pm->submodel[mn].angs.h, pm->submodel[mn].angs.b);

    pnt = tpnt * m;
  }

  *dest = pnt;
}

// Goes through all objects and fills in the lightmap data for them
void AssignLightmapsToObjectSurfaces(int surface_index, int terrain) {
  int i, t, j;
  uint8_t rotated[MAX_LIGHTMAP_INFOS];

  memset(rotated, 0, MAX_LIGHTMAP_INFOS);

  for (i = 0; i <= Highest_object_index; i++) {
    if ((terrain != 0) != (OBJECT_OUTSIDE(&Objects[i]) != 0))
      continue;

    if (Objects[i].type != OBJ_NONE && Objects[i].lighting_render_type == LRT_LIGHTMAPS) {
      poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

      if (!po->new_style)
        continue;

      for (t = 0; t < po->n_models; t++) {
        bsp_info *sm = &po->submodel[t];

        if (IsNonRenderableSubmodel(po, t))
          continue;

        for (j = 0; j < sm->num_faces; j++, surface_index++) {
          ApplyLightmapToObjectSurface(&Objects[i], t, j, &Light_surfaces[surface_index]);

          // Rotate the lightmap  upper left
          object *obj = &Objects[i];
          lightmap_object_face *fp = &obj->lm_object.lightmap_faces[t][j];
          lightmap_info *lmi_ptr = &LightmapInfo[fp->lmi_handle];

          if (!rotated[fp->lmi_handle]) {
            vector uleft, rvec, uvec, norm;
            GetPointInObjectSpace(&uleft, &lmi_ptr->upper_left, obj, t, 1);
            GetPointInObjectSpace(&norm, &lmi_ptr->normal, obj, t, 0);
            lmi_ptr->normal = norm;
            lmi_ptr->upper_left = uleft;

            GetPointInObjectSpace(&rvec, &ScratchRVecs[fp->lmi_handle], obj, t, 0);
            GetPointInObjectSpace(&uvec, &ScratchUVecs[fp->lmi_handle], obj, t, 0);

            rotated[fp->lmi_handle] = 1;

            // Find all the faces in this submodel that have this lightmap info handle
            for (int k = 0; k < sm->num_faces; k++) {
              lightmap_object_face *this_fp = &obj->lm_object.lightmap_faces[t][k];
              if (fp->lmi_handle == this_fp->lmi_handle) {
                this_fp->rvec = rvec;
                this_fp->uvec = uvec;
              }
            }
          }
        }
      }
    }
  }
}

// Goes through all objects int a room and fills in the lightmap data for them
void AssignLightmapsToObjectSurfacesForSingleRoom(int surface_index, int roomnum) {
  int i, t, j;

  for (i = 0; i <= Highest_object_index; i++) {

    if (Objects[i].type != OBJ_NONE && Objects[i].lighting_render_type == LRT_LIGHTMAPS &&
        Objects[i].roomnum == roomnum) {
      poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

      if (!po->new_style)
        continue;

      for (t = 0; t < po->n_models; t++) {
        bsp_info *sm = &po->submodel[t];

        if (IsNonRenderableSubmodel(po, t))
          continue;

        for (j = 0; j < sm->num_faces; j++, surface_index++)
          ApplyLightmapToObjectSurface(&Objects[i], t, j, &Light_surfaces[surface_index]);
      }
    }
  }
}

// Sets up radiosity surfaces for objects in the mine
// Returns the number of new surfaces
int ComputeSurfacesForObjects(int surface_index, int terrain) {
  int i, t, j;

  for (i = 0; i <= Highest_object_index; i++) {
    if ((terrain != 0) != (OBJECT_OUTSIDE(&Objects[i]) != 0))
      continue;

    if (Objects[i].type != OBJ_NONE && Objects[i].lighting_render_type == LRT_LIGHTMAPS) {
      poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

      if (!po->new_style)
        continue;

      SetupObjectLightmapMemory(&Objects[i]);

      if (terrain)
        CombineObjectLightmapUVs(&Objects[i], LMI_TERRAIN_OBJECT);
      else
        CombineObjectLightmapUVs(&Objects[i], LMI_ROOM_OBJECT);

      for (t = 0; t < po->n_models; t++) {
        bsp_info *sm = &po->submodel[t];

        if (IsNonRenderableSubmodel(po, t))
          continue;

        for (j = 0; j < sm->num_faces; j++, surface_index++) {
          ComputeObjectSurfaceRes(&Light_surfaces[surface_index], &Objects[i], t, j);

          if (sm->faces[j].nverts > 0) {
            Light_surfaces[surface_index].verts = (vector *)mem_malloc(sm->faces[j].nverts * sizeof(vector));
            ASSERT(Light_surfaces[surface_index].verts != NULL);
          } else
            Light_surfaces[surface_index].verts = NULL;

          if (Light_surfaces[surface_index].xresolution * Light_surfaces[surface_index].yresolution > 0) {
            Light_surfaces[surface_index].elements =
                (rad_element *)mem_malloc(Light_surfaces[surface_index].xresolution *
                                          Light_surfaces[surface_index].yresolution * sizeof(rad_element));
            ASSERT(Light_surfaces[surface_index].elements != NULL);
          } else
            Light_surfaces[surface_index].elements = NULL;

          Light_surfaces[surface_index].flags = 0;

          if (sm->faces[j].texnum == -1) {
            Light_surfaces[surface_index].emittance.r = 0;
            Light_surfaces[surface_index].emittance.g = 0;
            Light_surfaces[surface_index].emittance.b = 0;
            Light_surfaces[surface_index].reflectivity = .5;
          } else {
            Light_surfaces[surface_index].emittance.r = (float)GameTextures[po->textures[sm->faces[j].texnum]].r;
            Light_surfaces[surface_index].emittance.g = (float)GameTextures[po->textures[sm->faces[j].texnum]].g;
            Light_surfaces[surface_index].emittance.b = (float)GameTextures[po->textures[sm->faces[j].texnum]].b;
            Light_surfaces[surface_index].reflectivity = GameTextures[po->textures[sm->faces[j].texnum]].reflectivity;
            if ((GetMaxColor(&Light_surfaces[surface_index].emittance)) > .005)
              Light_surfaces[surface_index].flags |= SF_LIGHTSOURCE;
          }

          if (terrain)
            Light_surfaces[surface_index].surface_type = ST_TERRAIN_OBJECT;
          else
            Light_surfaces[surface_index].surface_type = ST_ROOM_OBJECT;

          Light_surfaces[surface_index].normal =
              LightmapInfo[Objects[i].lm_object.lightmap_faces[t][j].lmi_handle].normal;
          Light_surfaces[surface_index].roomnum = Objects[i].roomnum;

          if (Light_surfaces[surface_index].surface_type == ST_ROOM_OBJECT) {
            if (Rooms[Objects[i].roomnum].flags & RF_TOUCHES_TERRAIN)
              Light_surfaces[surface_index].flags |= SF_TOUCHES_TERRAIN;

            for (int k = 0; k < Rooms[Objects[i].roomnum].num_portals; k++) {
              if (Rooms[Objects[i].roomnum].portals[k].croom == -1 ||
                  (Rooms[Rooms[Objects[i].roomnum].portals[k].croom].flags & RF_EXTERNAL))
                Light_surfaces[surface_index].flags |= SF_TOUCHES_TERRAIN;
            }
          }

          // Set the vertices for each element
          BuildElementListForObjectFace(i, t, j, &Light_surfaces[surface_index]);
        }
      }
    }
  }

  return 0;
}

// Sets up radiosity surfaces for objects in a room
// Returns the number of new surfaces
int ComputeSurfacesForObjectsForSingleRoom(int surface_index, int roomnum) {
  int i, t, j;

  for (i = 0; i <= Highest_object_index; i++) {

    if (Objects[i].type != OBJ_NONE && Objects[i].lighting_render_type == LRT_LIGHTMAPS &&
        Objects[i].roomnum == roomnum) {
      poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

      if (!po->new_style)
        continue;

      SetupObjectLightmapMemory(&Objects[i]);
      CombineObjectLightmapUVs(&Objects[i], LMI_ROOM_OBJECT);

      for (t = 0; t < po->n_models; t++) {
        bsp_info *sm = &po->submodel[t];

        if (IsNonRenderableSubmodel(po, t))
          continue;

        for (j = 0; j < sm->num_faces; j++, surface_index++) {
          ComputeObjectSurfaceRes(&Light_surfaces[surface_index], &Objects[i], t, j);

          if (sm->faces[j].nverts > 0) {
            Light_surfaces[surface_index].verts = (vector *)mem_malloc(sm->faces[j].nverts * sizeof(vector));
            ASSERT(Light_surfaces[surface_index].verts != NULL);
          } else
            Light_surfaces[surface_index].verts = NULL;

          if (Light_surfaces[surface_index].xresolution * Light_surfaces[surface_index].yresolution > 0) {
            Light_surfaces[surface_index].elements =
                (rad_element *)mem_malloc(Light_surfaces[surface_index].xresolution *
                                          Light_surfaces[surface_index].yresolution * sizeof(rad_element));
            ASSERT(Light_surfaces[surface_index].elements != NULL);
          } else
            Light_surfaces[surface_index].elements = NULL;

          if (sm->faces[j].texnum == -1) {
            Light_surfaces[surface_index].emittance.r = 0;
            Light_surfaces[surface_index].emittance.g = 0;
            Light_surfaces[surface_index].emittance.b = 0;
            Light_surfaces[surface_index].reflectivity = .5;
          } else {
            Light_surfaces[surface_index].emittance.r = (float)GameTextures[po->textures[sm->faces[j].texnum]].r;
            Light_surfaces[surface_index].emittance.g = (float)GameTextures[po->textures[sm->faces[j].texnum]].g;
            Light_surfaces[surface_index].emittance.b = (float)GameTextures[po->textures[sm->faces[j].texnum]].b;
            Light_surfaces[surface_index].reflectivity = GameTextures[po->textures[sm->faces[j].texnum]].reflectivity;
          }

          Light_surfaces[surface_index].surface_type = ST_ROOM_OBJECT;

          Light_surfaces[surface_index].normal =
              LightmapInfo[Objects[i].lm_object.lightmap_faces[t][j].lmi_handle].normal;
          Light_surfaces[surface_index].roomnum = Objects[i].roomnum;

          // Set the vertices for each element
          BuildElementListForObjectFace(i, t, j, &Light_surfaces[surface_index]);
        }
      }
    }
  }

  return 0;
}

// Gets the total number of object faces that exist in a mine
int GetTotalObjectFaces(int terrain) {
  int i;
  int facecount = 0;

  for (i = 0; i <= Highest_object_index; i++) {
    if (Objects[i].type != OBJ_NONE) {
      if ((terrain != 0) != (OBJECT_OUTSIDE(&Objects[i]) != 0))
        continue;

      if (Objects[i].lighting_render_type == LRT_LIGHTMAPS) {
        poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

        if (!po->new_style)
          continue;

        facecount += CountFacesInPolymodel(po);
      }
    }
  }

  return facecount;
}

// Gets the total number of object faces that exist in a room
int GetTotalObjectFacesForSingleRoom(int roomnum) {
  int i;
  int facecount = 0;

  for (i = 0; i <= Highest_object_index; i++) {
    if (Objects[i].type != OBJ_NONE) {
      if (Objects[i].roomnum != roomnum)
        continue;

      if (Objects[i].lighting_render_type == LRT_LIGHTMAPS) {
        poly_model *po = &Poly_models[Objects[i].rtype.pobj_info.model_num];

        if (!po->new_style)
          continue;

        facecount += CountFacesInPolymodel(po);
      }
    }
  }

  return facecount;
}

void BuildObjectLightmapUVs(object *obj, int *sublist, int *facelist, int count, vector *lightmap_poly, int nv,
                            int lm_type) {
  matrix face_matrix, trans_matrix;
  vector fvec;
  vector avg_vert;
  vector verts[MAX_VERTS_PER_FACE * 5];
  vector facevert;
  vector rot_vert;
  int i, t;
  int lmi_handle;
  vector world_verts[32];

  poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];

  for (i = 0; i < pm->submodel[sublist[0]].faces[facelist[0]].nverts; i++)
    GetObjectPointInWorld(&world_verts[i], obj, sublist[0], pm->submodel[sublist[0]].faces[facelist[0]].vertnums[i]);

  // find the center point of this face
  vm_MakeZero(&avg_vert);
  for (i = 0; i < nv; i++)
    avg_vert += lightmap_poly[i];

  avg_vert /= nv;

  // Make the orientation matrix
  // Reverse the normal because we're looking "at" the face, not from it

  vm_GetNormal(&fvec, &world_verts[0], &world_verts[1], &world_verts[2]);
  fvec = -fvec;

  if ((vm_NormalizeVector(&fvec)) != 0)
    vm_VectorToMatrix(&face_matrix, &fvec, NULL, NULL);
  else
    vm_MakeIdentity(&face_matrix);
  // Make the transformation matrix

  angvec avec;
  vm_ExtractAnglesFromMatrix(&avec, &face_matrix);
  vm_AnglesToMatrix(&trans_matrix, avec.p, avec.h, avec.b);

  // Rotate all the points
  for (i = 0; i < nv; i++) {
    vector vert = lightmap_poly[i];

    vert -= avg_vert;
    vm_MatrixMulVector(&rot_vert, &vert, &trans_matrix);

    verts[i] = rot_vert;
  }

  // Find left most point
  int leftmost_point = -1;
  float leftmost_x = 900000.00f; // a big number

  for (i = 0; i < nv; i++) {
    if (verts[i].x < leftmost_x) {
      leftmost_point = i;
      leftmost_x = verts[i].x;
    }
  }

  ASSERT(leftmost_point != -1);

  // Find top most point
  int topmost_point = -1;
  float topmost_y = -900000.0f; // a big number

  for (i = 0; i < nv; i++) {
    if (verts[i].y > topmost_y) {
      topmost_point = i;
      topmost_y = verts[i].y;
    }
  }

  ASSERT(topmost_point != -1);

  // Find right most point
  int rightmost_point = -1;
  float rightmost_x = -900000.00f; // a big number

  for (i = 0; i < nv; i++) {
    if (verts[i].x > rightmost_x) {
      rightmost_point = i;
      rightmost_x = verts[i].x;
    }
  }

  ASSERT(rightmost_point != -1);

  // Find bottom most point
  int bottommost_point = -1;
  float bottommost_y = 900000.0f; // a big number

  for (i = 0; i < nv; i++) {
    if (verts[i].y < bottommost_y) {
      bottommost_point = i;
      bottommost_y = verts[i].y;
    }
  }

  ASSERT(bottommost_point != -1);

  // now set the base vertex, which is where we base uv 0,0 on

  vector base_vector;

  base_vector.x = verts[leftmost_point].x;
  base_vector.y = verts[topmost_point].y;
  base_vector.z = 0;

  // Figure out lightmap resolution
  float xdiff = verts[rightmost_point].x - verts[leftmost_point].x;
  float ydiff = verts[topmost_point].y - verts[bottommost_point].y;
  float max_diff = (float)std::max(xdiff, ydiff);

  int lightmap_x_res = -1, lightmap_y_res = -1;
  float xspacing = LightSpacing;
  float yspacing = LightSpacing;
  float spacing = LightSpacing;
  int res, done_spacing = 0;
  int xspace_int, yspace_int;

  // If the default spacing would make us go over our lightmap resolution
  // limit, then increase the spacing and try again
  while (!done_spacing) {
    res = (xdiff / xspacing);
    if (((xdiff / xspacing) - res) > 0)
      res++;

    res++;

    if (res > 126)
      xspacing += 1;
    else
      done_spacing = 1;
  }

  // Set a mininum, at least
  if (res < 2)
    res = 2;

  lightmap_x_res = res;

  done_spacing = 0;
  while (!done_spacing) {
    res = (ydiff / yspacing);
    if (((ydiff / yspacing) - res) > 0)
      res++;

    res++;

    if (res > 126)
      yspacing += 1;
    else
      done_spacing = 1;
  }

  // Set a mininum, at least
  if (res < 2)
    res = 2;

  lightmap_y_res = res;

  /*
          // Find power of 2 number
          for (i=0;i<=7;i++)
          {
                  int low_num=1<i;
                  int hi_num=2<<i;
                  if (res<=hi_num && res>low_num)
                  {
                          lightmap_res=hi_num;
                          break;
                  }
          }*/

  lmi_handle = AllocLightmapInfo(lightmap_x_res, lightmap_y_res, lm_type);
  ASSERT(lmi_handle != BAD_LMI_INDEX);

  // Now do best fit spacing
  if (BestFit) {
    xspace_int = (xdiff / lightmap_x_res);
    if ((xdiff - (lightmap_x_res * xspace_int)) > 0)
      xspace_int++;

    yspace_int = (ydiff / lightmap_y_res);
    if ((ydiff - (lightmap_y_res * yspace_int)) > 0)
      yspace_int++;
  } else {
    xspace_int = xspacing;
    yspace_int = yspacing;
  }

  // Figure out lightmap uvs

  // Rotate all the face points
  for (i = 0; i < count; i++) {
    obj->lm_object.lightmap_faces[sublist[i]][facelist[i]].lmi_handle = lmi_handle;
    bsp_info *sm = &pm->submodel[sublist[i]];
    polyface *fp = &sm->faces[facelist[i]];
    lightmap_object_face *lfp = &obj->lm_object.lightmap_faces[sublist[i]][facelist[i]];

    for (t = 0; t < fp->nverts; t++)
      GetObjectPointInWorld(&world_verts[t], obj, sublist[i], fp->vertnums[t]);

    for (t = 0; t < fp->nverts; t++) {
      vector vert = world_verts[t];

      vert -= avg_vert;
      vm_MatrixMulVector(&rot_vert, &vert, &trans_matrix);

      facevert = rot_vert;

      // Find uv2s for this vertex
      lfp->u2[t] = (facevert.x - verts[leftmost_point].x) / (float)(lightmap_x_res * xspace_int);
      lfp->v2[t] = fabs((verts[topmost_point].y - facevert.y)) / (float)(lightmap_y_res * yspace_int);

      ASSERT(lfp->u2[t] >= 0 && lfp->u2[t] <= 1.0);
      ASSERT(lfp->v2[t] >= 0 && lfp->v2[t] <= 1.0);
    }
  }

  // Find upper left corner
  vm_TransposeMatrix(&trans_matrix);
  vm_MatrixMulVector(&rot_vert, &base_vector, &trans_matrix);
  LightmapInfo[lmi_handle].upper_left = rot_vert + avg_vert;

  LightmapInfo[lmi_handle].xspacing = xspace_int;
  LightmapInfo[lmi_handle].yspacing = yspace_int;
  LightmapInfo[lmi_handle].normal = -fvec;
  ScratchCenters[lmi_handle] = avg_vert;
}

// Important - vertnum is the index into the face_verts[] array in the face structure,
// not an index into the verts[] array of the room structure
void BuildElementListForObjectFace(int objnum, int subnum, int facenum, rad_surface *surf) {
  matrix face_matrix, trans_matrix;
  vector fvec;
  vector avg_vert;
  vector verts[MAX_VERTS_PER_FACE * 5];
  vector rot_vert;
  vector vert;
  vector world_verts[32];
  int i, t;
  int xres, yres;
  int lmi_handle;
  int x1 = surf->x1, y1 = surf->y1;
  poly_model *pm = &Poly_models[Objects[objnum].rtype.pobj_info.model_num];
  bsp_info *sm = &pm->submodel[subnum];
  polyface *fp = &sm->faces[facenum];

  xres = surf->xresolution;
  yres = surf->yresolution;

  ASSERT(pm->used);
  ASSERT(fp->nverts >= 3);
  ASSERT(Objects[objnum].lm_object.lightmap_faces[subnum][facenum].lmi_handle != BAD_LMI_INDEX);

  ASSERT(fp->nverts < 32);

  for (i = 0; i < fp->nverts; i++)
    GetObjectPointInWorld(&world_verts[i], &Objects[objnum], subnum, fp->vertnums[i]);

  lmi_handle = Objects[objnum].lm_object.lightmap_faces[subnum][facenum].lmi_handle;
  avg_vert = ScratchCenters[lmi_handle];

  // Make the orientation matrix
  // Reverse the normal because we're looking "at" the face, not from it
  fvec = -LightmapInfo[lmi_handle].normal;

  if ((vm_NormalizeVector(&fvec)) != 0)
    vm_VectorToMatrix(&face_matrix, &fvec, NULL, NULL);
  else
    vm_MakeIdentity(&face_matrix);

  ScratchRVecs[lmi_handle] = face_matrix.rvec;
  ScratchUVecs[lmi_handle] = face_matrix.uvec;

  // Make the transformation matrix

  angvec avec;
  vm_ExtractAnglesFromMatrix(&avec, &face_matrix);
  vm_AnglesToMatrix(&trans_matrix, avec.p, avec.h, avec.b);

  // Rotate all the points
  for (i = 0; i < fp->nverts; i++) {
    vert = world_verts[i];

    vert -= avg_vert;
    vm_MatrixMulVector(&rot_vert, &vert, &trans_matrix);

    verts[i] = rot_vert;
  }

  // Find a base vector
  vector base_vector;
  vector xdiff, ydiff;

  vm_MakeZero(&xdiff);
  vm_MakeZero(&ydiff);

  // Rotate our upper left point into our 2d space
  vert = LightmapInfo[lmi_handle].upper_left - avg_vert;
  vm_MatrixMulVector(&base_vector, &vert, &trans_matrix);

  vm_TransposeMatrix(&trans_matrix);

  xdiff.x = LightmapInfo[lmi_handle].xspacing;
  ydiff.y = LightmapInfo[lmi_handle].yspacing;

  for (i = 0; i < yres; i++) {
    for (t = 0; t < xres; t++) {
      int element_index = i * xres + t;
      vector clip_verts[4];

      rad_element *ep = &surf->elements[element_index];

      clip_verts[0] = base_vector + (xdiff * (t + x1)) - (ydiff * (i + y1));
      clip_verts[1] = base_vector + (xdiff * (t + x1 + 1)) - (ydiff * (i + y1));
      clip_verts[2] = base_vector + (xdiff * (t + x1 + 1)) - (ydiff * (i + y1 + 1));
      clip_verts[3] = base_vector + (xdiff * (t + x1)) - (ydiff * (i + y1 + 1));
      ClipSurfaceElement(verts, ep, clip_verts, fp->nverts);

      for (int k = 0; k < ep->num_verts; k++) {
        vm_MatrixMulVector(&rot_vert, &ep->verts[k], &trans_matrix);
        ep->verts[k] = rot_vert + avg_vert;
      }
    }
  }

  if (Square_surfaces) {
    surf->verts[0] = base_vector;
    surf->verts[1] = base_vector + (xdiff * xres);
    surf->verts[2] = base_vector + (xdiff * xres) - (ydiff * yres);
    surf->verts[3] = base_vector - (ydiff * yres);

    for (int k = 0; k < 4; k++) {
      vm_MatrixMulVector(&rot_vert, &surf->verts[k], &trans_matrix);
      surf->verts[k] = rot_vert + avg_vert;
    }
    surf->num_verts = 4;
  } else {
    surf->num_verts = fp->nverts;
    for (int k = 0; k < surf->num_verts; k++) {
      surf->verts[k] = world_verts[k];
    }
  }
}

#define MAX_COMBINES 50
#define LM_ADJACENT_FACE_THRESHOLD .95
uint8_t *ObjectsAlreadyCombined[MAX_OBJECTS];

// Given a submodel and a face, goes through the entire object and checks to see
// if this face can share a lightmap with any other face
int TestObjectLightAdjacency(object *obj, int subnum, int facenum, int lmi_type) {
  int i, t, k;
  poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
  bsp_info *a_sm = &pm->submodel[subnum];
  polyface *afp = &a_sm->faces[facenum];
  vector anormal;

  vector averts[MAX_VERTS_PER_FACE * 5];
  vector bverts[MAX_VERTS_PER_FACE * 5];
  vector dest_verts[MAX_VERTS_PER_FACE * 5];

  int face_combine_list[MAX_COMBINES];
  int submodel_combine_list[MAX_COMBINES];

  if (afp->texnum == -1)
    return 0;
  int tex = pm->textures[afp->texnum];

  if (GameTextures[tex].r > 0 || GameTextures[tex].g > 0 || GameTextures[tex].b > 0)
    return 0;

  // Setup our 'base' face

  int anv = afp->nverts;
  int total_faces = 1;

  submodel_combine_list[0] = subnum;
  face_combine_list[0] = facenum;

  for (i = 0; i < afp->nverts; i++)
    GetObjectPointInWorld(&averts[i], obj, subnum, afp->vertnums[i]);
  vm_GetNormal(&anormal, &averts[0], &averts[1], &averts[2]);

StartOver:

  // Go through each room and find an adjacent face
  for (i = 0; i < pm->n_models; i++) {
    bsp_info *bsm = &pm->submodel[i];

    if (IsNonRenderableSubmodel(pm, i))
      continue;

    if (bsm != a_sm) // only combine faces in the same submodel
      continue;

    for (t = 0; t < bsm->num_faces; t++) {
      if (total_faces >= MAX_COMBINES - 1)
        continue;

      if (bsm == a_sm && t == facenum)
        continue; // don't do self

      // Don't do if already spoken fore
      if (ObjectsAlreadyCombined[i][t])
        continue;

      polyface *bfp = &bsm->faces[t];
      vector bnormal;

      // Don't do combine light sources

      tex = pm->textures[bfp->texnum];
      if (GameTextures[tex].r > 0 || GameTextures[tex].g > 0 || GameTextures[tex].b > 0)
        continue;

      for (k = 0; k < bfp->nverts; k++)
        GetObjectPointInWorld(&bverts[k], obj, i, bfp->vertnums[k]);

      vm_GetNormal(&bnormal, &bverts[0], &bverts[1], &bverts[2]);

      int nv = CombineLightFaces(dest_verts, averts, anv, &anormal, bverts, bfp->nverts, &bnormal);

      // We have a combine!  Mark this face in the appropriate list
      // And update our new polygon
      if (nv > 0) {
        submodel_combine_list[total_faces] = i;
        face_combine_list[total_faces] = t;
        total_faces++;

        ObjectsAlreadyCombined[subnum][facenum] = 1;
        ObjectsAlreadyCombined[i][t] = 1;
        for (k = 0; k < nv; k++)
          averts[k] = dest_verts[k];

        anv = nv;

        goto StartOver;
      }
    }
  }

  // Now build 1 lightmap to be shared across all the faces that were combined
  if (total_faces > 1) {
    BuildObjectLightmapUVs(obj, submodel_combine_list, face_combine_list, total_faces, averts, anv, lmi_type);
  }

  return 1;
}

// Computes the the mines UVs
// Faces can now share one lightmap, so this routine goes through and tries to
// combine as many faces as it can into one lightmap
void CombineObjectLightmapUVs(object *obj, int lmi_type) {
  int i, t, k;
  int not_combined = 0;

  poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
  ASSERT(obj->lm_object.used);

  for (i = 0; i < pm->n_models; i++) {
    bsp_info *sm = &pm->submodel[i];

    if (IsNonRenderableSubmodel(pm, i))
      continue;

    ObjectsAlreadyCombined[i] = (uint8_t *)mem_malloc(sm->num_faces);
    ASSERT(ObjectsAlreadyCombined[i]);
    for (k = 0; k < sm->num_faces; k++)
      ObjectsAlreadyCombined[i][k] = 0;
  }

  for (i = 0; i < pm->n_models; i++) {
    bsp_info *sm = &pm->submodel[i];

    if (IsNonRenderableSubmodel(pm, i))
      continue;

    for (t = 0; t < sm->num_faces; t++) {
      if (*(ObjectsAlreadyCombined[i] + t) == 0)
        TestObjectLightAdjacency(obj, i, t, lmi_type);
    }
  }

  // Now build lightmaps for any faces that couldn't be combined
  for (i = 0; i < pm->n_models; i++) {
    bsp_info *sm = &pm->submodel[i];

    if (IsNonRenderableSubmodel(pm, i))
      continue;

    for (t = 0; t < sm->num_faces; t++) {
      if (!ObjectsAlreadyCombined[i][t]) {
        vector verts[MAX_VERTS_PER_FACE * 5];
        int submodel_list[2], face_list[2];
        for (k = 0; k < sm->faces[t].nverts; k++) {
          GetObjectPointInWorld(&verts[k], obj, i, sm->faces[t].vertnums[k]);
        }

        submodel_list[0] = i;
        face_list[0] = t;
        BuildObjectLightmapUVs(obj, submodel_list, face_list, 1, verts, sm->faces[t].nverts, lmi_type);
        not_combined++;
      }
    }
  }

  mprintf(0, "%d %s faces couldn't be combined!\n", not_combined, pm->name);

  // Free memory
  for (i = 0; i < pm->n_models; i++) {
    bsp_info *sm = &pm->submodel[i];

    if (IsNonRenderableSubmodel(pm, i))
      continue;
    mem_free(ObjectsAlreadyCombined[i]);
  }
}