File: rad_init.cpp

package info (click to toggle)
descent3 1.5.0%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 35,256 kB
  • sloc: cpp: 416,147; ansic: 3,233; sh: 10; makefile: 8
file content (427 lines) | stat: -rw-r--r-- 10,253 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
 * Descent 3
 * Copyright (C) 2024 Parallax Software
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "stdafx.h"
#include "editor.h"
#include "LightingStatus.h"
#include "radiosity.h"
#include "pserror.h"
#include "findintersection.h"
#include "hemicube.h"
#include "descent.h"
#include "rad_cast.h"
#include "ddio.h"
#include "vecmat.h"
#include <stdlib.h>
#include "mem.h"

// Some radiosity globals
int Shoot_method = SM_HEMICUBE;
int Hemicube_resolution = 1024;

int Ignore_terrain = 0;
int Ignore_satellites = 0;

float rad_TotalFlux = 0.0f;
float rad_Convergence = 1.0f;

int rad_NumSurfaces;
int rad_NumElements;

float *rad_FormFactors;

int rad_StepCount = 0;
int rad_MaxStep = 1;
int rad_DoneCalculating = 0;

float rad_TotalUnsent = 0.0f;

rad_surface *rad_MaxSurface = NULL;
rad_surface *rad_Surfaces;

int UseVolumeLights = 0; // User selectable to do volumelights
int Calculate_specular_lighting = 0;

// Specular variable
float *Room_strongest_value[MAX_ROOMS][4];

// Tells radiosity renderer to do volume lighting
int Do_volume_lighting = 0;

volume_element *Volume_elements[MAX_VOLUME_ELEMENTS];

// Shoot_from_patch tells us whether or not we're shooting from the center of
// a surface or if we must shoot from the center of each of its individual elements
// Shoot_from_patch=1 is much faster
int Shoot_from_patch = 1;

int DoRadiosityRun(int method, rad_surface *light_surfaces, int count) {
  float start_time;

  mprintf(0, "Calculating radiosity on %d faces.\n", count);

  rad_Surfaces = light_surfaces;
  rad_NumSurfaces = count;

  Shoot_method = method;

  start_time = timer_GetTime();

  InitRadiosityRun();

  // Setup our window
  CLightingStatus dlg;

  dlg.Create(IDD_LIGHTINGSTATUS);

  CalculateRadiosity();

  dlg.DestroyWindow();
  CloseRadiosityRun();

  // Print time taken
  mprintf(0, "\nLighting took %.4f seconds.\n", timer_GetTime() - start_time);

  return 1;
}

// Sets up our radiosity run
void InitRadiosityRun() {
  rad_TotalFlux = 0.0f;
  rad_StepCount = 0;
  rad_DoneCalculating = 0;

  // Clear key buffer
  //	ddio_KeyFrame();
  ddio_KeyFlush();

  CountElements();
  CalculateArea();
  InitExitance();

  if (Shoot_method == SM_HEMICUBE) {
    SetupFormFactors();
    InitHemicube(Hemicube_resolution);
  }
}

// Initalizes memory for form factors
void SetupFormFactors() {
  ASSERT(rad_NumElements > 0);

  rad_FormFactors = (float *)mem_malloc(rad_NumElements * sizeof(float));
  ASSERT(rad_FormFactors != NULL);
}

void CalculateAreaForSurface(rad_surface *sp) {
  int i;

  vector normal;

  vm_GetPerp(&normal, &sp->verts[0], &sp->verts[1], &sp->verts[2]);
  sp->area = (vm_GetMagnitude(&normal) / 2);

  for (i = 2; i < sp->num_verts - 1; i++) {
    vm_GetPerp(&normal, &sp->verts[0], &sp->verts[i], &sp->verts[i + 1]);
    sp->area += (vm_GetMagnitude(&normal) / 2);
  }

  sp->surface_area = sp->area;
  sp->element_area = sp->area / (sp->xresolution * sp->yresolution);
}

void CalculateAreaForElement(rad_element *ep) {
  int i;

  vector normal;

  if (ep->flags & EF_IGNORE) {
    ep->area = .0000001f;
    return;
  }

  vm_GetPerp(&normal, &ep->verts[0], &ep->verts[1], &ep->verts[2]);
  ep->area = (vm_GetMagnitude(&normal) / 2);

  for (i = 2; i < ep->num_verts - 1; i++) {
    vm_GetPerp(&normal, &ep->verts[0], &ep->verts[i], &ep->verts[i + 1]);
    ep->area += (vm_GetMagnitude(&normal) / 2);
  }

  if (ep->area < .05)
    ep->flags |= EF_SMALL;
  if (ep->area == 0) {
    ep->flags |= EF_IGNORE;
    ep->area = .00000001f;
  }
}

// Calculates the area of the surfaces and elements in our environment
void CalculateArea() {
  rad_surface *surf;
  int i, t;

  for (i = 0; i < rad_NumSurfaces; i++) {
    surf = &rad_Surfaces[i];

    CalculateAreaForSurface(surf);

    for (t = 0; t < surf->xresolution * surf->yresolution; t++) {
      rad_element *ep = &surf->elements[t];
      CalculateAreaForElement(ep);
    }
  }
}

// Counts the total number of elements we have to work with
void CountElements() {
  rad_surface *surf;
  int i;

  rad_NumElements = 0;

  for (i = 0; i < rad_NumSurfaces; i++) {
    surf = &rad_Surfaces[i];

    rad_NumElements += (surf->xresolution * surf->yresolution);
  }
  mprintf(0, "Number of elements=%d\n", rad_NumElements);
}

// Initializes the exitances for all surfaces
void InitExitance() {
  int i;

  for (i = 0; i < rad_NumSurfaces; i++) {
    SetExitanceForSurface(&rad_Surfaces[i]);
  }
}

// Gets the spectral emittance for a surface
void GetEmittance(rad_surface *surf, spectra *dest) { *dest = surf->emittance; }

// Sets all the elements of a surface to their initial unshot exitance values
void SetExitanceForSurface(rad_surface *surf) {
  int i;

  surf->exitance = surf->emittance;

  for (i = 0; i < surf->xresolution * surf->yresolution; i++) {
    if (Shoot_from_patch) {
      surf->elements[i].exitance.r = 0;
      surf->elements[i].exitance.g = 0;
      surf->elements[i].exitance.b = 0;
    } else
      surf->elements[i].exitance = surf->emittance;
  }

  rad_TotalFlux += GetUnsentFlux(surf);
}

// Find the surface we want to shoot from
void UpdateUnsentValues() {
  float cur_unsent;
  float max_unsent = 0.0f;
  float sat_max_unsent = 0.0f;
  int use_sat = 0;
  int i;
  rad_surface *sat_surface;

  static int last_report_time = -10;

  rad_TotalUnsent = 0.0f;
  rad_MaxSurface = NULL;

  // Go through all the surfaces searching for the surface with the greatest
  // exitance yet to be shot

  for (i = 0; i < rad_NumSurfaces; i++) {
    rad_surface *surf = &rad_Surfaces[i];
    cur_unsent = GetUnsentFlux(surf);
    rad_TotalUnsent += cur_unsent;

    if (cur_unsent > max_unsent) {
      max_unsent = cur_unsent;
      rad_MaxSurface = surf;
    }

    // Always give satellites priority
    if (surf->surface_type == ST_SATELLITE && cur_unsent > 0) {
      if (cur_unsent > sat_max_unsent) {
        use_sat = 1;
        sat_max_unsent = cur_unsent;
        sat_surface = surf;
      }
    }
  }

  // Update convergence
  if (rad_TotalFlux > .0001)
    rad_Convergence = fabs(rad_TotalUnsent) / rad_TotalFlux;
  else
    rad_Convergence = 0.0;

  mprintf_at(2, 3, 0, "Left=%f  ", rad_Convergence);

  if (timer_GetTime() - last_report_time > 10.0) {
    mprintf(0, "Percentage left=%f\n", rad_Convergence);
    last_report_time = timer_GetTime();
  }

  if (use_sat)
    rad_MaxSurface = sat_surface;

  if (!use_sat && Shoot_method == SM_SWITCH_AFTER_SATELLITES) {
    SetupFormFactors();
    InitHemicube(Hemicube_resolution);
    Shoot_method = SM_HEMICUBE;
  }

  // No energy left to shoot?
  if (rad_MaxSurface == NULL || rad_TotalUnsent == 0)
    rad_DoneCalculating = 1;
}

// Finds the world coordinate center of a surface
void GetCenterOfSurface(rad_surface *sp, vector *dest) { vm_GetCentroid(dest, sp->verts, sp->num_verts); }

// Finds the world coordinate center of a surface
void GetCenterOfElement(rad_element *ep, vector *dest) { vm_GetCentroid(dest, ep->verts, ep->num_verts); }

void CalculateRadiosity() {
  int key;

  while (!rad_DoneCalculating) {
    if (rad_StepCount >= rad_MaxStep) {
      rad_DoneCalculating = 1;
      break;
    }
    mprintf_at(2, 2, 0, "Lightcount=%d   ", rad_StepCount);

    DoRadiosityIteration();

    rad_StepCount++;

    Descent->defer();
    //		ddio_KeyFrame();
    while ((key = ddio_KeyInKey()) != 0) {
      if (key == KEY_LAPOSTRO) {
        rad_DoneCalculating = 1;
        break;
      }
    }
  }

  // Clear key buffer
  ddio_KeyFlush();
}

// returns the amount of unsent flux from a surface
float GetUnsentFlux(rad_surface *surface) {
  float flux;

  flux = surface->exitance.r + surface->exitance.g + surface->exitance.b;

  if (surface->surface_type != ST_SATELLITE)
    flux *= surface->area;

  return flux;
}

float GetMaxColor(spectra *sp) {
  float m;

  m = std::max<float>(sp->r, sp->g);
  m = std::max<float>(sp->b, m);

  return m;
}

int FixEdges = 0;
extern void AddSpectra(spectra *dest, spectra *a, spectra *b);

void NormalizeExitance() {
  int i, t;
  float rmax = 0.0f;

  for (i = 0; i < rad_NumSurfaces; i++) {
    rad_surface *surf = &rad_Surfaces[i];
    spectra *emit = &surf->emittance;

    for (t = 0; t < surf->xresolution * surf->yresolution; t++) {
      rad_element *ep = &surf->elements[t];

      if (ep->flags & EF_IGNORE)
        continue;

      if (Shoot_from_patch) {
        ep->exitance.r += emit->r;
        ep->exitance.g += emit->g;
        ep->exitance.b += emit->b;
      }

      /*			if (ep->exitance.r>1)
                                      ep->exitance.r=1;
                              if (ep->exitance.g>1)
                                      ep->exitance.g=1;
                              if (ep->exitance.b>1)
                                      ep->exitance.b=1;*/

      rmax = GetMaxColor(&ep->exitance);

      if (rmax > 1.0 && rmax > 0.0) {
        ep->exitance.r /= rmax;
        ep->exitance.g /= rmax;
        ep->exitance.b /= rmax;
      }
    }
  }
}

// Shuts down the radiosity stuff, freeing memory, etc
void CloseRadiosityRun() {

  NormalizeExitance();
  if (Shoot_method == SM_HEMICUBE) {
    mem_free(rad_FormFactors);
    CloseHemicube();
  }
}
void Calculate() {

  if (Shoot_method == SM_HEMICUBE)
    CalculateFormFactorsHemiCube();
  else
    CalculateFormFactorsRaycast();

  // Set unshot exitance for MaxSurface to zero
  rad_MaxSurface->exitance.r = 0;
  rad_MaxSurface->exitance.g = 0;
  rad_MaxSurface->exitance.b = 0;
  rad_MaxSurface->flags &= ~SF_LIGHTSOURCE;
}

// Does one iteration of ray-casting radiosity
int DoRadiosityIteration() {
  UpdateUnsentValues();

  if (!rad_DoneCalculating)
    Calculate();

  return 1;
}