1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
--- HISTORICAL COMMENTS FOLLOW ---
* $Logfile: /DescentIII/Main/vecmat/vector.cpp $
* $Revision: 26 $
* $Date: 4/19/00 5:28p $
* $Author: Matt $
*
* Vector/Matrix functions
*
* $Log: /DescentIII/Main/vecmat/vector.cpp $
*
* 26 4/19/00 5:28p Matt
* From Duane for 1.4
* Mac-only optimizations
*
* 25 5/10/99 3:18a Matt
* Fixed extract angles from matrix, which was totally bogus when the
* forward vector was straight up or down.
*
* 24 4/21/99 11:06a Kevin
* new ps_rand and ps_srand to replace rand & srand
*
* 23 2/19/99 4:26p Jason
* more work on Katmai support
*
* 22 2/16/99 12:36a Kevin
* Fixes for release builds of OEM V3 and KAtmai
*
* 21 1/11/99 4:45p Jason
* added first pass at katmai support
*
* 20 1/01/99 4:10p Chris
* Added some const parameters, improved ray cast object collide/rejection
* code
*
* 19 6/15/98 7:00a Chris
* Added vm_SinCos().
*
* 18 6/03/98 6:50p Chris
* Fixed some infinity bugs
*
* 17 6/03/98 6:42p Chris
* Added multipoint collision detection an Assert on invalid (infinite
* endpoint).
*
* 16 5/25/98 3:45p Jason
* added vm_GetCentroidFast
*
* 15 3/12/98 7:30p Chris
* Added ObjSetOrient
*
* 14 2/08/98 6:01p Matt
* Added functions to multiply by a transposed matrix, and simplified some
* other code a bit.
*
* 13 2/06/98 10:57a Matt
* Made vm_VectorToMatrix() take any one or two vectors, & not require
* forward vec.
* Also, made the uvec and rvec parameters default to NULL if not
* specified.
*
* 12 2/02/98 8:17p Chris
* Added a != operator and a Zero_vector constant
*
* 11 1/20/98 4:04p Matt
* Made vm_GetNormalizedDir() and vm_GetNormalizeDirFast() return the
* distance between the two input points.
*
* 10 1/13/98 1:30p Jason
* changed vm_GetCentroid to also return the size of the area
*
* 9 11/04/97 6:21p Chris
* Allowed other files to use the vm_DeltaAngVecNorm function
*
* 8 10/25/97 7:15p Jason
* implemented vm_ComputeBoundingSphere
*
* 7 10/14/97 4:35p Samir
* Added vm_MakeRandomVector.
*
* 6 9/23/97 2:26p Matt
* Made vm_GetNormal() return the magnitude of the normal (before it was
* normalized)
*
* 5 8/28/97 4:56p Jason
* implemented vm_GetCentroid
*
* 4 8/21/97 7:09p Matt
* Made vm_VectorAngleToMatrix() work when forward vector was straight up
* or down
*
* 3 8/18/97 4:45p Matt
* Added vm_VectorAngleToMatrix() to vecmat library, and removed copy from
* HCurves.cpp
*
* 2 7/17/97 3:56p Matt
* Added vm_Orthogonalize()
*
* 25 5/20/97 5:52p Jason
* tweaked a couple of things with magnitude division
*
* 24 4/18/97 2:14p Samir
* Added vm_DeltaAngVec.
*
* 23 2/28/97 3:33 PM Jeremy
* put pserror.h in "" instead of <> since it's one of
*
* 22 2/27/97 1:40p Chris
* Added a function to compute the determinate --
* BTW on the last rev. I moved all inline functions
* to the header. (So they will be inlined)
*
* 21 2/26/97 7:33p Chris
*
* 20 2/20/97 11:41a Chris
* Added a negate unary operator for vectors
*
* 19 2/12/97 5:28p Jason
* implemented ExtractAnglesFromMatrix function
*
* 18 2/11/97 6:49p Matt
* Added vm_VectorToMatrix()
* Made vm_NormalizeVector() return the old vector mag
* Fixed bug in inline version of crossprod
*
* 17 2/07/97 5:38p Matt
* Moved fixed-point math funcs to fix.lib
*
* $NoKeywords: $
*/
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "vecmat.h"
#include "mono.h"
#include "pserror.h"
#include "psrand.h"
const vector Zero_vector = {0.0, 0.0, 0.0};
const matrix Identity_matrix = IDENTITY_MATRIX;
void vm_AverageVector(vector *a, int num) {
// Averages a vector. ie divides each component of vector a by num
assert(num != 0);
a->x = a->x / (float)num;
a->y = a->y / (float)num;
a->z = a->z / (float)num;
}
void vm_AddVectors(vector *result, vector *a, vector *b) {
// Adds two vectors. Either source can equal dest
result->x = a->x + b->x;
result->y = a->y + b->y;
result->z = a->z + b->z;
}
void vm_SubVectors(vector *result, const vector *a, const vector *b) {
// Subtracts second vector from first. Either source can equal dest
result->x = a->x - b->x;
result->y = a->y - b->y;
result->z = a->z - b->z;
}
float vm_VectorDistance(const vector *a, const vector *b) {
// Given two vectors, returns the distance between them
vector dest;
float dist;
vm_SubVectors(&dest, a, b);
dist = vm_GetMagnitude(&dest);
return dist;
}
float vm_VectorDistanceQuick(vector *a, vector *b) {
// Given two vectors, returns the distance between them
vector dest;
float dist;
vm_SubVectors(&dest, a, b);
dist = vm_GetMagnitudeFast(&dest);
return dist;
}
// Calculates the perpendicular vector given three points
// Parms: n - the computed perp vector (filled in)
// v0,v1,v2 - three clockwise vertices
void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) {
// Given 3 vertices, return the surface normal in n
// IMPORTANT: B must be the 'corner' vertex
vector x, y;
vm_SubVectors(&x, b, a);
vm_SubVectors(&y, c, b);
vm_CrossProduct(n, &x, &y);
}
// Calculates the (normalized) surface normal give three points
// Parms: n - the computed surface normal (filled in)
// v0,v1,v2 - three clockwise vertices
// Returns the magnitude of the normal before it was normalized.
// The bigger this value, the better the normal.
float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) {
vm_GetPerp(n, v0, v1, v2);
return vm_NormalizeVector(n);
}
// Does a simple dot product calculation
float vm_DotProduct(const vector *u, const vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); }
// Scales all components of vector v by value s and stores result in vector d
// dest can equal source
void vm_ScaleVector(vector *d, vector *v, float s) {
d->x = (v->x * s);
d->y = (v->y * s);
d->z = (v->z * s);
}
void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) {
// Scales all components of vector v by value s
// adds the result to p and stores result in vector d
// dest can equal source
d->x = p->x + (v->x * s);
d->y = p->y + (v->y * s);
d->z = p->z + (v->z * s);
}
void vm_DivVector(vector *dest, vector *src, float n) {
// Divides a vector into n portions
// Dest can equal src
assert(n != 0);
dest->x = src->x / n;
dest->y = src->y / n;
dest->z = src->z / n;
}
void vm_CrossProduct(vector *dest, vector *u, vector *v) {
// Computes a cross product between u and v, returns the result
// in Normal. Dest cannot equal source.
dest->x = (u->y * v->z) - (u->z * v->y);
dest->y = (u->z * v->x) - (u->x * v->z);
dest->z = (u->x * v->y) - (u->y * v->x);
}
// Normalize a vector.
// Returns: the magnitude before normalization
float vm_NormalizeVector(vector *a) {
float mag;
mag = vm_GetMagnitude(a);
if (mag > 0)
*a /= mag;
else {
*a = Zero_vector;
a->x = 1.0;
mag = 0.0f;
}
return mag;
}
float vm_GetMagnitude(vector *a) {
float f;
f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z);
return (sqrt(f));
}
void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); }
void vm_MakeIdentity(matrix *dest) {
memset(dest, 0, sizeof(matrix));
dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0;
}
void vm_MakeInverseMatrix(matrix *dest) {
memset((void *)dest, 0, sizeof(matrix));
dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0;
}
void vm_TransposeMatrix(matrix *m) {
// Transposes a matrix in place
float t;
t = m->uvec.x;
m->uvec.x = m->rvec.y;
m->rvec.y = t;
t = m->fvec.x;
m->fvec.x = m->rvec.z;
m->rvec.z = t;
t = m->fvec.y;
m->fvec.y = m->uvec.z;
m->uvec.z = t;
}
void vm_MatrixMulVector(vector *result, vector *v, matrix *m) {
// Rotates a vector thru a matrix
assert(result != v);
result->x = *v * m->rvec;
result->y = *v * m->uvec;
result->z = *v * m->fvec;
}
// Multiply a vector times the transpose of a matrix
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) {
assert(result != v);
result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v);
result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v);
result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v);
}
void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
assert((dest != src0) && (dest != src1));
dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec);
dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec);
dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec);
dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec);
dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec);
dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec);
dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec);
dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec);
dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec);
}
// Multiply a matrix times the transpose of a matrix
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
assert((dest != src0) && (dest != src1));
dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x;
dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y;
dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z;
dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x;
dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y;
dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z;
dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x;
dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y;
dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z;
}
matrix operator*(matrix src0, matrix src1) {
// For multiplying two 3x3 matrices together
matrix dest;
dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec);
dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec);
dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec);
dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec);
dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec);
dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec);
dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec);
dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec);
dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec);
return dest;
}
matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); }
// Computes a normalized direction vector between two points
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) {
vm_SubVectors(dest, end, start);
return vm_NormalizeVector(dest);
}
// Returns a normalized direction vector between two points
// Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) {
vm_SubVectors(dest, end, start);
return vm_NormalizeVectorFast(dest);
}
float vm_GetMagnitudeFast(vector *v) {
float a, b, c, bc;
a = fabs(v->x);
b = fabs(v->y);
c = fabs(v->z);
if (a < b) {
float t = a;
a = b;
b = t;
}
if (b < c) {
float t = b;
b = c;
c = t;
if (a < b) {
float t = a;
a = b;
b = t;
}
}
bc = (b / 4) + (c / 8);
return a + bc + (bc / 2);
}
// Normalize a vector using an approximation of the magnitude
// Returns: the magnitude before normalization
float vm_NormalizeVectorFast(vector *a) {
float mag;
mag = vm_GetMagnitudeFast(a);
if (mag == 0.0) {
a->x = a->y = a->z = 0.0;
return 0;
}
a->x = (a->x / mag);
a->y = (a->y / mag);
a->z = (a->z / mag);
return mag;
}
// Computes the distance from a point to a plane.
// Parms: checkp - the point to check
// Parms: norm - the (normalized) surface normal of the plane
// planep - a point on the plane
// Returns: The signed distance from the plane; negative dist is on the back of the plane
float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) {
vector t;
t = *checkp - *planep;
return t * *norm;
}
float vm_GetSlope(float x1, float y1, float x2, float y2) {
// returns the slope of a line
float r;
if (y2 - y1 == 0)
return (0.0);
r = (x2 - x1) / (y2 - y1);
return (r);
}
void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) {
float sbsh, cbch, cbsh, sbch;
sbsh = (sinb * sinh);
cbch = (cosb * cosh);
cbsh = (cosb * sinh);
sbch = (sinb * cosh);
m->rvec.x = cbch + (sinp * sbsh); // m1
m->uvec.z = sbsh + (sinp * cbch); // m8
m->uvec.x = (sinp * cbsh) - sbch; // m2
m->rvec.z = (sinp * sbch) - cbsh; // m7
m->fvec.x = (sinh * cosp); // m3
m->rvec.y = (sinb * cosp); // m4
m->uvec.y = (cosb * cosp); // m5
m->fvec.z = (cosh * cosp); // m9
m->fvec.y = -sinp; // m6
}
void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) {
float sinp, cosp, sinb, cosb, sinh, cosh;
sinp = FixSin(p);
cosp = FixCos(p);
sinb = FixSin(b);
cosb = FixCos(b);
sinh = FixSin(h);
cosh = FixCos(h);
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Computes a matrix from a vector and and angle of rotation around that vector
// Parameters: m - filled in with the computed matrix
// v - the forward vector of the new matrix
// a - the angle of rotation around the forward vector
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) {
float sinb, cosb, sinp, cosp, sinh, cosh;
sinb = FixSin(a);
cosb = FixCos(a);
sinp = -v->y;
cosp = sqrt(1.0 - (sinp * sinp));
if (cosp != 0.0) {
sinh = v->x / cosp;
cosh = v->z / cosp;
} else {
sinh = 0;
cosh = 1.0;
}
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Ensure that a matrix is orthogonal
void vm_Orthogonalize(matrix *m) {
// Normalize forward vector
if (vm_NormalizeVector(&m->fvec) == 0) {
Int3(); // forward vec should not be zero-length
return;
}
// Generate right vector from forward and up vectors
m->rvec = m->uvec ^ m->fvec;
// Normaize new right vector
if (vm_NormalizeVector(&m->rvec) == 0) {
vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only
return;
}
// Recompute up vector, in case it wasn't entirely perpendiclar
m->uvec = m->fvec ^ m->rvec;
}
// do the math for vm_VectorToMatrix()
void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec;
ASSERT(fvec != NULL);
*zvec = *fvec;
if (vm_NormalizeVector(zvec) == 0) {
Int3(); // forward vec should not be zero-length
return;
}
if (uvec == NULL) {
if (rvec == NULL) { // just forward vec
bad_vector2:;
if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down
m->rvec.x = 1.0;
m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0;
m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0;
} else { // not straight up or down
xvec->x = zvec->z;
xvec->y = 0;
xvec->z = -zvec->x;
vm_NormalizeVector(xvec);
*yvec = *zvec ^ *xvec;
}
} else { // use right vec
*xvec = *rvec;
if (vm_NormalizeVector(xvec) == 0)
goto bad_vector2;
*yvec = *zvec ^ *xvec;
// normalize new perpendicular vector
if (vm_NormalizeVector(yvec) == 0)
goto bad_vector2;
// now recompute right vector, in case it wasn't entirely perpendiclar
*xvec = *yvec ^ *zvec;
}
} else { // use up vec
*yvec = *uvec;
if (vm_NormalizeVector(yvec) == 0)
goto bad_vector2;
*xvec = *yvec ^ *zvec;
// normalize new perpendicular vector
if (vm_NormalizeVector(xvec) == 0)
goto bad_vector2;
// now recompute up vector, in case it wasn't entirely perpendiclar
*yvec = *zvec ^ *xvec;
}
}
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
// Parameters: m - filled in with the orienation matrix
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
// One or two of these must be specified, with the other(s) set to NULL.
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
if (!fvec) { // no forward vector. Use up and/or right vectors.
matrix tmatrix;
if (uvec) { // got up vector. use up and, if specified, right vectors.
DoVectorToMatrix(&tmatrix, uvec, NULL, rvec);
m->fvec = -tmatrix.uvec;
m->uvec = tmatrix.fvec;
m->rvec = tmatrix.rvec;
return;
} else { // no up vector. Use right vector only.
ASSERT(rvec);
DoVectorToMatrix(&tmatrix, rvec, NULL, NULL);
m->fvec = -tmatrix.rvec;
m->uvec = tmatrix.uvec;
m->rvec = tmatrix.fvec;
return;
}
} else {
ASSERT(!(uvec && rvec)); // can only have 1 or 2 vectors specified
DoVectorToMatrix(m, fvec, uvec, rvec);
}
}
void vm_SinCos(uint16_t a, float *s, float *c) {
if (s)
*s = FixSin(a);
if (c)
*c = FixCos(a);
}
#define EPSILON 0.00001
#define IS_ZERO(x) (fabs(x) < EPSILON)
// extract angles from a matrix
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) {
float sinh, cosh, cosp, sinb, cosb;
// Deal with straight up or straight down
if (IS_ZERO(m->fvec.x) && IS_ZERO(m->fvec.z)) {
a->p = (m->fvec.y > 0) ? 0xc000 : 0x4000;
a->b = 0.0;
a->h = FixAtan2(m->rvec.x, -m->rvec.z);
return a;
}
a->h = FixAtan2(m->fvec.z, m->fvec.x);
sinh = FixSin(a->h);
cosh = FixCos(a->h);
if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it
cosp = (m->fvec.x / sinh);
else // cosine is larger, so use it
cosp = (m->fvec.z / cosh);
a->p = FixAtan2(cosp, -m->fvec.y);
sinb = (m->rvec.y / cosp);
cosb = (m->uvec.y / cosp);
a->b = FixAtan2(cosb, sinb);
return a;
}
// returns the value of a determinant
float calc_det_value(matrix *det) {
return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y -
det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x +
det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x;
}
// computes the delta angle between two vectors.
// vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
// the forward vector (third parameter) can be NULL, in which case the absolute
// value of the angle in returned. Otherwise the angle around that vector is
// returned.
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) {
vector t0, t1;
t0 = *v0;
t1 = *v1;
vm_NormalizeVector(&t0);
vm_NormalizeVector(&t1);
return vm_DeltaAngVecNorm(&t0, &t1, fvec);
}
// computes the delta angle between two normalized vectors.
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) {
angle a;
a = FixAcos(vm_DotProduct(v0, v1));
if (fvec) {
vector t;
vm_CrossProduct(&t, v0, v1);
if (vm_DotProduct(&t, fvec) < 0)
a = -a;
}
return a;
}
// Gets the real center of a polygon
// Returns the size of the passed in stuff
float vm_GetCentroid(vector *centroid, vector *src, int nv) {
ASSERT(nv > 2);
vector normal;
float area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitude(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitude(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// Gets the real center of a polygon, but uses fast magnitude calculation
// Returns the size of the passed in stuff
float vm_GetCentroidFast(vector *centroid, vector *src, int nv) {
ASSERT(nv > 2);
vector normal;
float area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitudeFast(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitudeFast(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values)
void vm_MakeRandomVector(vector *vec) {
vec->x = ps_rand() - D3_RAND_MAX / 2;
vec->y = ps_rand() - D3_RAND_MAX / 2;
vec->z = ps_rand() - D3_RAND_MAX / 2;
}
// Given a set of points, computes the minimum bounding sphere of those points
float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) {
// This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that
// we should probably implement sometime.
vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp;
float dx, dy, dz;
float rad, rad2;
int i;
// Initialize min, max vars
min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0];
// First, find the points with the min & max x,y, & z coordinates
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
if (vp->x < min_x->x)
min_x = vp;
if (vp->x > max_x->x)
max_x = vp;
if (vp->y < min_y->y)
min_y = vp;
if (vp->y > max_y->y)
max_y = vp;
if (vp->z < min_z->z)
min_z = vp;
if (vp->z > max_z->z)
max_z = vp;
}
// Calculate initial sphere
dx = vm_VectorDistance(min_x, max_x);
dy = vm_VectorDistance(min_y, max_y);
dz = vm_VectorDistance(min_z, max_z);
if (dx > dy)
if (dx > dz) {
*center = (*min_x + *max_x) / 2;
rad = dx / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
else if (dy > dz) {
*center = (*min_y + *max_y) / 2;
rad = dy / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
// Go through all points and look for ones that don't fit
rad2 = rad * rad;
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
vector delta;
float t2;
delta = *vp - *center;
t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z;
// If point outside, make the sphere bigger
if (t2 > rad2) {
float t;
t = sqrt(t2);
rad = (rad + t) / 2;
rad2 = rad * rad;
*center += delta * (t - rad) / t;
}
}
// We're done
return rad;
}
|