File: Design.s

package info (click to toggle)
design 2.0.12-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,408 kB
  • ctags: 1,283
  • sloc: asm: 13,945; fortran: 626; sh: 22; makefile: 12
file content (290 lines) | stat: -rw-r--r-- 10,365 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Design  FEH 1Aug90, re-written 21Oct91
#
# Augments S formula language to include:
# 
#	name	- name[i] = name of ith original variable in x
#	label	- label[i] = label of ith original variable (=name if none)
#	assume	- assume(original x)
#	assume.code - coded version of assume (1-9, 9=added interaction)
#	parms	- parms(original x)
#		  for interaction effects parms[[i]] is a matrix with dim
#		  3 x (1+# interaction terms).  First element in pair
#		  is 1 if first factor is represented as an expanded
#		  non-linear term, 0 otherwise (this applies to polynomial,
#		  lspline, rcspline, scored).  Second element applies to
#		  second factor in interaction effect.  Third element
#		  applies to third factor (0 if second order interaction)
#		  First column contains factor numbers involved in interaction.
#	limits  - limits(original x)
#	values	- For continuous variables with <=10 unique values, is
#		  vector of values.  NULL otherwise.
#	interactions - 3 x k matrix of factor numbers
#
# Cannot have interactions between two stratification factors. 
#
#
#23Feb95 - added logic to remove cluster() factors
#
Design <- function(mf, allow.offset=TRUE, intercept=1)   			{

Terms <- attr(mf, "terms")
Term.labels <- attr(Terms,'term.labels')
#iscluster <- if(length(Term.labels)) substring(Term.labels,1,8)=='cluster('
#	else FALSE    5jan04
# Problem: offsets not included in term.labels in R

#For some reason, model frame sometimes has a blank name if using %ia%

namx <- names(mf)

if(any(namx=="")) {
   namx <- names(mf) <- c(namx[1],Term.labels)
   dimnames(mf)[[2]] <- namx
   dimnames(attr(Terms,"factors"))[[1]] <- namx
 }

wts <- if(any(namx=='(weights)'))(1:length(namx))[namx=='(weights)']
else 0  # 4jun02

if(length(Terms)==0) inner.name <- NULL else {
	#Handle case where a function has two arguments that are names,
	#e.g. rcs(x,knots) -> want x only
	inner.name <- unique(var.inner(Terms))
	# var.inner is stripped down version of terms.inner (see Design.trans)
        #Note: these exclude interaction terms and %ia% terms
  }

response.pres <- attr(Terms, 'response') > 0   # 3Jun99

offs <- attr(Terms, "offset")
if(!length(offs)) offs <- 0
if(offs>0 & !allow.offset)
	stop("offset variable not allowed in formula")


factors <- attr(Terms, "factors")
if(length(factors) && response.pres) factors <- factors[-1,,drop=FALSE]

attr(Terms, "intercept") <- intercept
fname <- flabel <- name <- strt <- asm <- len <- 
	 fname.incl.dup <- ia <- funits <- NULL  # funits 20May99
parm <- nonlinear <- limits <- values <- list()

scol<-1
colnam <- list()

#Corrected 23Jun95 - if user used name 'dist' get would return 'dist'
XDATADIST <- .Options$datadist
if(length(XDATADIST))
{
   if(!exists(XDATADIST)) stop(paste("dataset",XDATADIST,
	"not found for options(datadist=)"))
   datadist <- if(.R.) eval(as.name(XDATADIST)) else
     eval(as.name(XDATADIST), local=FALSE)  #27May99  9Apr02
   Limits <- datadist$limits
   Limnames <- dimnames(Limits)[[2]]
}

nc <- 0

options(Design.attr=NULL, TEMPORARY=FALSE)	#Used internally by asis, rcs, ...
anyfactors <- ncol(mf) > 1*response.pres #3Jun99
i1.noia <- 0
if(anyfactors)for(i in (response.pres+1):ncol(mf)) {
##	if(i!=offs && i!=wts && !iscluster[i-response.pres]) {  #3Jun99 5jan04
  if(i != offs && i !=wts) {
	i1 <- i - response.pres   #3Jun99
	xi <- mf[[i]]
	z <- attributes(xi)
	assu <- z$assume.code
	if(!length(assu) || assu!=9) i1.noia <- i1.noia+1
	if(!length(assu))			{#Not processed w/asis,et
	   nam <- inner.name[i1.noia]
	   lab <- attr(xi, "label")
       ord <- is.ordered(xi) && all.is.numeric(levels(xi))   #21Jun99
	   if(!length(lab) || lab=="") lab <- nam
	   if(ord)	{
	      xi <- scored(xi, name=nam, label=lab)
	      attr(mf[,i],"contrasts") <- attr(xi,"contrasts")
			}
	   else if(is.character(xi) | is.category(xi)) {
         ## | is.factor(xi)) 21Feb02
         if(is.ordered(xi) &&
            .Options$contrasts[2]!='contr.treatment')
           warning(paste('Variable',nam,'is an ordered factor.\n',
                         'You should set options(contrasts=c("contr.treatment","contr.treatment"))\nor Design will not work properly.'))
         ## warning 6may03
         xi <- catg(xi, name=nam, label=lab)
       }
	   else if(is.matrix(xi)) xi <- matrx(xi, name=nam, label=lab)
	   else xi <- asis(xi, name=nam, label=lab)
	   z <- c(z,attributes(xi))
						}

	za <- z$assume.code
	zname <- z$name

	fname.incl.dup <- c(fname.incl.dup, zname)
	if(!length(fname) || !any(fname==zname))	{ #unique factor
	  nc <- nc+1
	  fname <- c(fname,zname)
	  flabel <- c(flabel,z$label)
      ##funits <- was here   9Jun99 (see 5 down)
	  asm <- c(asm,za)
	  colnam[[i1]] <- z$colnames
	  if(za!=8) name <- c(name, colnam[[i1]])
	  if(za!=9) 			{
        funits <- c(funits, if(length(z$units))z$units else '')
        if(length(z$parms)) parm[[zname]] <- z$parms
        if(length(XDATADIST))
          {
		limits[[zname]] <- if(any(Limnames==zname)) {
                  j <- match(zname, Limnames, 0) #require EXACT match
                  Limits[,j[j>0]]
                }
			else rep(NA,7)
		j <- match(zname, names(datadist$values), 0)
		if(j>0) {
          values[[zname]] <- datadist$values[[j]]
          l1 <- levels(xi); l2 <- datadist$values[[j]]  #20May99
          if(length(l1) && ((length(l1) != length(l2)) ||
                            any(sort(l1) != sort(l2))))
            warning(paste('Variable',zname,'has levels',paste(l1,collapse=' '),
                          'which do not match levels given to datadist (',
                          paste(l2,collapse=' '),'). datadist values ignored.'))
          values[[zname]] <- l1
        }
      }
       }

	  if(length(nonl <- z$nonlinear)) nonlinear[[zname]] <- nonl

	  if(za==9)			{
		iia <- match(z$ia, fname)
		if(any(is.na(iia)))stop(paste(paste(z$ia,collapse=" "),
	"cannot be used in %ia% since not listed as main effect"))
		ia <- cbind(ia, c(iia,0))
		parms <- rbind(z$parms,0)
		parms[,1] <- c(iia,0)
		if(length(parms)) parm[[zname]] <- parms
      }
    }
	nrows <- if(is.matrix(xi))nrow(xi) else length(xi)
  }
  }

#Save list of which factors where %ia% interactions (before adding automatic ias
which.ia <- (1:length(asm))[asm==9]

#Add automatically created interaction terms
if(anyfactors) {
#  if((nrow(factors)-(offs>0)-sum(iscluster))!=length(fname.incl.dup))5jan04
  nrf <- if(!length(factors)) 0 else if(.R.) nrow(factors) else
   nrow(factors) * (ncol(factors) > 0)

  ## S-Plus, if only offset in model, has factors as 2 rows 0 cols 5jan04
if(nrf || length(fname.incl.dup))
  if((nrf-(offs > 0)) != length(fname.incl.dup))
	stop("program logic error 1")
  ## added length(factors) 5jan04
if(length(factors)) for(i in 1:ncol(factors)) {
	f <- factors[,i]  #3Jun99 was -1,i
	j <- (1:length(f))[f>0]
	nia <- length(j)
	if(nia>1) {
	   fn <- fname.incl.dup[j]
	   jf <- match(fn,fname.incl.dup)
	   if(any(is.na(jf))) stop("program logic error 2")
	   nc <- nc + 1
	   asm <- c(asm,9)
	   if(nia==2)ialab <- paste(fn[1],"*",fn[2])
	   else if(nia==3)ialab <- paste(fn[1],"*",fn[2],"*",fn[3])
	   else stop("interaction term not second or third order")
	   fname <- c(fname, ialab)
	   flabel <- c(flabel, ialab)
	   if(sum(asm[jf]==8)>1)
		stop("cannot have interaction between two strata factors")
	   nn <- list()
	   for(k in 1:nia)			{
	      if(asm[jf[k]]==5 | asm[jf[k]]==8)
	         nn[[k]] <- paste(fn[k],"=",parm[[fname[jf[k]]]][-1],sep="")
	      else if(asm[jf[k]]==7)	{
	         nn[[k]] <- c(fn[k], paste(fn[k],"=",
	            parm[[fname[jf[k]]]][c(-1,-2)],sep=""))
					}
	      else nn[[k]] <- colnam[[jf[k]]]
						}
	      if(nia==2) nn[[3]] <- ""
	   parms <- jf
	   if(length(jf)==2) parms <- c(parms, 0)
	   nonlin <- NULL
	   nl1 <- nonlinear[[fname[jf[1]]]]
	   nl2 <- nonlinear[[fname[jf[2]]]]
#Strata factors don't have nonlinear duplicated for # levels - 1
	   if(asm[jf[1]]==8) nl1 <- rep(FALSE, length(parm[[fname[jf[1]]]])-1)
	   if(asm[jf[2]]==8) nl2 <- rep(FALSE, length(parm[[fname[jf[2]]]])-1)
	   if(nia==2) nl3 <- FALSE
	   else if(asm[jf[3]]==8) nl3 <- rep(FALSE, length(parm[[fname[jf[3]]]])-1)
	   else nl3 <- nonlinear[[fname[jf[3]]]]
	   n1 <- nn[[1]]
	   n2 <- nn[[2]]
	   n3 <- nn[[3]]
#model.matrix makes auto-products move first variable fastest, etc.
	   for(j3 in 1:length(n3))				 {
	        for(j2 in 1:length(n2))				{
	          for(j1 in 1:length(n1))		       {
		   parms <- cbind(parms,c(nl1[j1],nl2[j2],nl3[j3]))
		   nonlin <- c(nonlin, nl1[j1] | nl2[j2] | nl3[j3])
		   if(nia==2)name <- c(name, paste(n1[j1],"*",n2[j2]))
		   else name <- c(name, paste(n1[j1],"*",n2[j2],"*",n3[j3]))
							       }}}

#If was 2-way interaction and one of the factors was restricted %ia%,
#adjust indicators
	k <- match(jf, which.ia, 0)
	if(any(k>0)) {
	  if(nia==3) stop("cannot have 2-way interaction with an %ia% interaction")
	  k <- jf[k>0]
	  wparm <- parms[,1]==k; wparm[3] <- TRUE
	  parms[wparm,] <- parm[[fname[k]]][1:2,,drop=FALSE]
	  jf <- parms[,1]
	  nonlin <- apply(parms, 2, any)[-1]
	}

	   if(length(jf)==2) {jf <- c(jf, 0); parms[3,] <- 0}
	   ia <- cbind(ia, jf)
	   if(length(parms)) parm[[ialab]] <- parms
	   if(length(nonlin)) nonlinear[[ialab]] <- nonlin

									}}}

# if(!.R.) attr(mf,"names") <- NULL   ## was needed at all?  8Apr02
# above line removing names on model.frames with NA's removed and nothing
# on model.frames with no NA's removed 6May05
if(anyfactors) {
if(length(XDATADIST))
   limits <- structure(limits, row.names=c("Low:effect","Adjust to",
	"High:effect",
	"Low:prediction","High:prediction","Low","High"),class="data.frame")
#data.frame converts variables always NA to factor!

if(length(funits) != sum(asm!=9)) warning('program logic warning 1')
else names(funits) <- fname[asm!=9]

atr <- list(name=fname, label=flabel, units=funits, colnames=name,
            assume=c("asis","polynomial","lspline","rcspline","category",
              "","scored","strata","interaction","matrix")[asm],
            assume.code=as.integer(asm), parms=parm, limits=limits,
            values=values,nonlinear=nonlinear,
            interactions=structure(ia,dimnames=NULL))
}

else atr <- list(name=NULL, assume=NULL, assume.code=NULL, parms=NULL)

#attr(Terms,"Design") <- atr  13Apr01 (plus next 4)
#attr(mf,"terms") <- Terms
#attr(mf,"offset") <- offs
attr(mf, 'Design') <- atr
mf
}