1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
ols <- function(formula, data, weights, subset, na.action=na.delete,
method = "qr", model = FALSE, x = FALSE, y = FALSE,
se.fit=FALSE, linear.predictors=TRUE,
penalty=0, penalty.matrix, tol=1e-7, sigma=NULL,
var.penalty=c('simple','sandwich'), ...){
call <- match.call()
var.penalty <- match.arg(var.penalty)
m <- match.call(expand = FALSE)
m$method <- m$model <- m$x <- m$y <- m$se.fit <-
m$linear.predictors <- m$penalty <-
m$penalty.matrix <- m$tol <- m$sigma <- m$var.penalty <- m$... <- NULL
m$na.action <- na.action
if(.R.) m$drop.unused.levels <- TRUE
m[[1]] <- as.name("model.frame")
##X's present)
if(length(attr(terms(formula),"term.labels"))) {
## R's model.frame.default gives wrong model frame if [.factor
## removes unused factor levels
if(.R.) {
dul <- .Options$drop.unused.levels
if(!length(dul) || dul) {
on.exit(options(drop.unused.levels=dul))
options(drop.unused.levels=FALSE)
}
}
X <- Design(eval(m, sys.parent()))
if(.R.) options(drop.unused.levels=dul)
atrx <- attributes(X)
atr <- atrx$Design
nact <- atrx$na.action
Terms <- atrx$terms
assig <- DesignAssign(atr, 1, Terms)
penpres <- !(missing(penalty) && missing(penalty.matrix))
if(penpres && missing(var.penalty))
warning('default for var.penalty has changed to "simple"')
if(method == "model.frame") return(X)
scale <- as.character(formula[2])
attr(Terms, "formula") <- formula
if(length(nact$nmiss)) {
jia <- grep('%ia%',names(nact$nmiss), fixed=TRUE)
if(length(jia)) nact$nmiss <- nact$nmiss[-jia]
names(nact$nmiss) <-
c(scale,atr$name[atr$assume.code!=9])
}
weights <- model.extract(X, weights)
if(length(weights) && penpres)
stop('may not specify penalty with weights')
Y <- model.extract(X, response)
n <- length(Y)
if(model) m <- X
X <- model.matrix(Terms, X)
if(length(atr$colnames))
dimnames(X)[[2]] <- c("Intercept",atr$colnames)
else dimnames(X)[[2]] <- c("Intercept",dimnames(X)[[2]][-1])
if(method=="model.matrix") return(X) }
##Model with no covariables:
else {
if(length(weights))
stop('weights not implemented when no covariables are present')
assig <- NULL
yy <- attr(terms(formula),"variables")[1]
Y <- eval(yy,sys.parent(2))
nmiss <- sum(is.na(Y))
if(nmiss==0) nmiss <- NULL else names(nmiss) <- as.character(yy)
Y <- Y[!is.na(Y)]
yest <- mean(Y)
coef <- yest
n <- length(Y)
if(!length(sigma)) sigma <- sqrt(sum((Y-yest)^2)/(n-1))
cov <- matrix(sigma*sigma/n, nrow=1, ncol=1,
dimnames=list("Intercept","Intercept"))
fit <- list(coefficients=coef, var=cov,
non.slopes=1, fail=FALSE, residuals=Y-yest,
df.residual=n-1, intercept=TRUE)
if(linear.predictors) {
fit$linear.predictors <- rep(yest,n);
names(fit$linear.predictors) <- names(Y)
}
if(model) fit$model <- m
if(x) fit$x <- matrix(1, ncol=1, nrow=n,
dimnames=list(NULL,"Intercept"))
if(y) fit$y <- Y
fit$fitFunction <- c('ols','lm')
oldClass(fit) <- if(.SV4.)"Design" else c("ols","Design","lm")
return(fit)
}
if(!penpres) {
fit <- if(length(weights))
lm.wfit(X, Y, weights, method=method, ...) else
lm.fit(X, Y, method=method, ...)
if(.R.) cov.unscaled <- chol2inv(fit$qr$qr) else {
rinv <- solve(fit$R, diag(length(fit$coefficients)))
cov.unscaled <- rinv %*% t(rinv)
}
r <- fit$residuals
if(length(weights)) { ## see summary.lm
sse <- sum(weights * r^2)
yhat <- Y - r
m <- sum(weights * yhat / sum(weights))
ssr <- sum(weights * (yhat - m)^2)
r2 <- ssr / (ssr + sse)
if(!length(sigma)) sigma <- sqrt(sse/fit$df.residual)
} else {
sse <- sum(fit$residuals^2)
if(!length(sigma)) sigma <- sqrt(sse/fit$df.residual)
r2 <- 1-sse/sum((Y-mean(Y))^2)
}
fit$var <- sigma*sigma*cov.unscaled
cnam <- dimnames(X)[[2]]
dimnames(fit$var) <- list(cnam, cnam)
fit$stats <- c(n=n,'Model L.R.'=-n*logb(1-r2),
'd.f.'=length(fit$coef)-1,R2=r2,Sigma=sigma)
} else {
p <- length(atr$colnames)
if(missing(penalty.matrix)) penalty.matrix <- Penalty.matrix(atr,X)
if(nrow(penalty.matrix)!=p || ncol(penalty.matrix)!=p)
stop('penalty matrix does not have',p,'rows and columns')
psetup <- Penalty.setup(atr, penalty)
penalty <- psetup$penalty
multiplier <- psetup$multiplier
if(length(multiplier)==1) penalty.matrix <- multiplier*penalty.matrix
else {
a <- diag(sqrt(multiplier))
penalty.matrix <- a %*% penalty.matrix %*% a
}
fit <- lm.pfit(X, Y,
penalty.matrix=penalty.matrix, tol=tol,
var.penalty=var.penalty)
fit$penalty <- penalty
}
if(model)
fit$model <- m
if(linear.predictors) {
fit$linear.predictors <- Y-fit$residuals
names(fit$linear.predictors) <- names(Y)
}
if(x)
fit$x <- X
if(y)
fit$y <- Y
if(se.fit) {
se <- drop((((X %*% fit$var) * X) %*% rep(1, ncol(X)))^0.5)
if(!.R.) storage.mode(se) <- "single"
names(se) <- names(Y)
fit$se.fit <- se
}
fit <- c(fit, list(call=call, terms=Terms, Design=atr,
non.slopes=1, na.action=nact,
scale.pred=scale, fail=FALSE,
fitFunction=c('ols','lm')))
fit$assign <- assig
oldClass(fit) <- if(.SV4.)'Design' else c("ols","Design","lm")
fit
}
lm.pfit <- function(X, Y, penalty.matrix, tol=1e-7, regcoef.only=FALSE,
var.penalty=c('simple','sandwich')) {
var.penalty <- match.arg(var.penalty)
p <- ncol(X)-1
pm <- rbind(matrix(0, ncol=p+1, nrow=1),
cbind(matrix(0, ncol=1, nrow=p), penalty.matrix))
xpx <- t(X) %*% X
Z <- solvet(xpx+pm, tol=tol)
coef <- Z %*% t(X) %*% Y
if(regcoef.only) return(list(coefficients=coef))
res <- drop(Y - X %*% coef)
n <- length(Y)
sse <- sum(res^2)
s2 <- drop( (sse + t(coef) %*% pm %*% coef) / n )
var <- if(var.penalty=='simple') s2 * Z else s2 * Z %*% xpx %*% Z
cnam <- dimnames(X)[[2]]
dimnames(var) <- list(cnam, cnam)
sst <- sum((Y-mean(Y))^2)
lr <- n*(1+logb(sst/n))-n*logb(s2)-sse/s2
s2.unpen <- sse/n
dag <- diag((xpx / s2.unpen) %*% (s2 * Z))
df <- sum(dag) - 1
stats <- c(n=n, 'Model L.R.'=lr, 'd.f.'=df, R2=1-sse/sst, Sigma=sqrt(s2))
list(coefficients=drop(coef), var=var, residuals=res, df.residual=n-1,
penalty.matrix=penalty.matrix,
stats=stats, effective.df.diagonal=dag)
}
predict.ols <-
function(object, newdata,
type=c("lp","x","data.frame","terms","adjto","adjto.data.frame",
"model.frame"),
se.fit=FALSE, conf.int=FALSE, conf.type=c('mean','individual'),
incl.non.slopes, non.slopes, kint=1,
na.action=na.keep, expand.na=TRUE, center.terms=TRUE, ...)
predictDesign(object, newdata, type, se.fit, conf.int, conf.type,
incl.non.slopes, non.slopes, kint,
na.action, expand.na, center.terms, ...)
|