File: ols.s

package info (click to toggle)
design 2.0.12-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,408 kB
  • ctags: 1,283
  • sloc: asm: 13,945; fortran: 626; sh: 22; makefile: 12
file content (204 lines) | stat: -rw-r--r-- 7,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
ols <- function(formula, data, weights, subset, na.action=na.delete, 
                method = "qr", model = FALSE, x = FALSE, y = FALSE,
                se.fit=FALSE, linear.predictors=TRUE,
                penalty=0, penalty.matrix, tol=1e-7, sigma=NULL,
                var.penalty=c('simple','sandwich'), ...){
  call <- match.call()
  var.penalty <- match.arg(var.penalty)
  m <- match.call(expand = FALSE)
  m$method <- m$model <- m$x <- m$y <- m$se.fit <-
    m$linear.predictors <- m$penalty <- 
      m$penalty.matrix <- m$tol <- m$sigma <- m$var.penalty <- m$... <- NULL
  m$na.action <- na.action
  if(.R.) m$drop.unused.levels <- TRUE
  m[[1]] <- as.name("model.frame")
  ##X's present) 
  if(length(attr(terms(formula),"term.labels"))) {
    ## R's model.frame.default gives wrong model frame if [.factor
    ## removes unused factor levels
    if(.R.) {
      dul <- .Options$drop.unused.levels
      if(!length(dul) || dul) {
        on.exit(options(drop.unused.levels=dul))
        options(drop.unused.levels=FALSE)
      }
    }
    X <- Design(eval(m, sys.parent()))
    if(.R.) options(drop.unused.levels=dul)
    atrx <- attributes(X)
    atr <- atrx$Design
	nact <- atrx$na.action
	Terms <- atrx$terms
    assig <- DesignAssign(atr, 1, Terms)
    
	penpres <- !(missing(penalty) && missing(penalty.matrix))
    if(penpres && missing(var.penalty))
      warning('default for var.penalty has changed to "simple"')
    
	if(method == "model.frame") return(X)
	scale <- as.character(formula[2])
	attr(Terms, "formula") <- formula
	if(length(nact$nmiss)) {
      jia <- grep('%ia%',names(nact$nmiss), fixed=TRUE)
      if(length(jia)) nact$nmiss <- nact$nmiss[-jia]
      names(nact$nmiss) <- 
		c(scale,atr$name[atr$assume.code!=9])
    }
	weights <- model.extract(X, weights)
	if(length(weights) && penpres)
	  stop('may not specify penalty with weights')

	Y <- model.extract(X, response)
	n <- length(Y)
	if(model) m <- X
	X <- model.matrix(Terms, X)
	if(length(atr$colnames)) 
      dimnames(X)[[2]] <- c("Intercept",atr$colnames)
	else dimnames(X)[[2]] <- c("Intercept",dimnames(X)[[2]][-1])
	if(method=="model.matrix") return(X)				   }

  ##Model with no covariables:

  else {
    if(length(weights))
      stop('weights not implemented when no covariables are present')
    assig <- NULL
    yy <- attr(terms(formula),"variables")[1]
    Y <- eval(yy,sys.parent(2))
    nmiss <- sum(is.na(Y))
    if(nmiss==0) nmiss <- NULL else names(nmiss) <- as.character(yy)
    Y <- Y[!is.na(Y)]
    yest <- mean(Y)
    coef <- yest
    n <- length(Y)
    if(!length(sigma)) sigma <- sqrt(sum((Y-yest)^2)/(n-1))
    cov <- matrix(sigma*sigma/n, nrow=1, ncol=1,
                  dimnames=list("Intercept","Intercept"))
    fit <- list(coefficients=coef, var=cov,
                non.slopes=1, fail=FALSE, residuals=Y-yest,
                df.residual=n-1, intercept=TRUE)
    if(linear.predictors) {
      fit$linear.predictors <- rep(yest,n); 
      names(fit$linear.predictors) <- names(Y)
    }
    if(model) fit$model <- m
    if(x) fit$x <- matrix(1, ncol=1, nrow=n, 
                          dimnames=list(NULL,"Intercept"))
    if(y) fit$y <- Y
    fit$fitFunction <- c('ols','lm')
    oldClass(fit) <- if(.SV4.)"Design" else c("ols","Design","lm")
    return(fit)
  }

  if(!penpres) {
    fit <- if(length(weights))
      lm.wfit(X, Y, weights, method=method,  ...) else 
    lm.fit(X, Y, method=method, ...)
    if(.R.) cov.unscaled <- chol2inv(fit$qr$qr) else {
      rinv <- solve(fit$R, diag(length(fit$coefficients)))
      cov.unscaled <- rinv %*% t(rinv)
    }
    r <- fit$residuals
    if(length(weights)) { ## see summary.lm
      sse <- sum(weights * r^2)
      yhat <- Y - r
      m <- sum(weights * yhat / sum(weights))
      ssr <- sum(weights * (yhat - m)^2)
      r2 <- ssr / (ssr + sse)
      if(!length(sigma)) sigma <- sqrt(sse/fit$df.residual)
    } else {
      sse <- sum(fit$residuals^2)
      if(!length(sigma)) sigma <- sqrt(sse/fit$df.residual)
      r2 <- 1-sse/sum((Y-mean(Y))^2)
    }
    fit$var <- sigma*sigma*cov.unscaled
    cnam <- dimnames(X)[[2]]
    dimnames(fit$var) <- list(cnam, cnam)
    fit$stats <- c(n=n,'Model L.R.'=-n*logb(1-r2),
                   'd.f.'=length(fit$coef)-1,R2=r2,Sigma=sigma)
  } else {
    p <- length(atr$colnames)
    if(missing(penalty.matrix)) penalty.matrix <- Penalty.matrix(atr,X)
    if(nrow(penalty.matrix)!=p || ncol(penalty.matrix)!=p) 
      stop('penalty matrix does not have',p,'rows and columns')
    psetup <- Penalty.setup(atr, penalty)
    penalty <- psetup$penalty
    multiplier <- psetup$multiplier
    if(length(multiplier)==1) penalty.matrix <- multiplier*penalty.matrix
    else {
      a <- diag(sqrt(multiplier))
      penalty.matrix <- a %*% penalty.matrix %*% a
    }
    fit <- lm.pfit(X, Y,
                   penalty.matrix=penalty.matrix, tol=tol,
                   var.penalty=var.penalty)
    fit$penalty <- penalty
  }
  
  if(model)
    fit$model <- m
  if(linear.predictors) {
    fit$linear.predictors <- Y-fit$residuals
    names(fit$linear.predictors) <- names(Y)
  }
  if(x)
    fit$x <- X
  if(y)
    fit$y <- Y
  if(se.fit) {
    se <- drop((((X %*% fit$var) * X) %*% rep(1, ncol(X)))^0.5)
    if(!.R.) storage.mode(se) <- "single"
    names(se) <- names(Y)
    fit$se.fit <- se
  }
  fit <- c(fit, list(call=call, terms=Terms, Design=atr,
                     non.slopes=1, na.action=nact,
                     scale.pred=scale, fail=FALSE,
                     fitFunction=c('ols','lm')))
  fit$assign <- assig
  oldClass(fit) <- if(.SV4.)'Design' else c("ols","Design","lm")
  fit
}


lm.pfit <- function(X, Y, penalty.matrix, tol=1e-7, regcoef.only=FALSE,
                    var.penalty=c('simple','sandwich')) {

  var.penalty <- match.arg(var.penalty)
  p <- ncol(X)-1
  pm <- rbind(matrix(0, ncol=p+1, nrow=1),
              cbind(matrix(0, ncol=1, nrow=p), penalty.matrix))
  xpx <- t(X) %*% X
  Z <- solvet(xpx+pm, tol=tol)
  coef <- Z %*% t(X) %*% Y
  if(regcoef.only) return(list(coefficients=coef))
  res  <- drop(Y - X %*% coef)
  n <- length(Y)
  sse <- sum(res^2)
  s2 <- drop( (sse + t(coef) %*% pm %*% coef) / n )
  var <- if(var.penalty=='simple') s2 * Z else s2 * Z %*% xpx %*% Z
  cnam <- dimnames(X)[[2]]
  dimnames(var) <- list(cnam, cnam)
  sst <- sum((Y-mean(Y))^2)
  lr <- n*(1+logb(sst/n))-n*logb(s2)-sse/s2
  s2.unpen <- sse/n
  dag <- diag((xpx / s2.unpen) %*% (s2 * Z))
  df <- sum(dag) - 1
  stats <- c(n=n, 'Model L.R.'=lr, 'd.f.'=df, R2=1-sse/sst, Sigma=sqrt(s2))
  
  list(coefficients=drop(coef), var=var, residuals=res, df.residual=n-1,
       penalty.matrix=penalty.matrix, 
       stats=stats, effective.df.diagonal=dag)
}


predict.ols <- 
  function(object, newdata,
           type=c("lp","x","data.frame","terms","adjto","adjto.data.frame",
             "model.frame"),
           se.fit=FALSE, conf.int=FALSE, conf.type=c('mean','individual'),
           incl.non.slopes, non.slopes, kint=1,
           na.action=na.keep, expand.na=TRUE, center.terms=TRUE, ...)
  predictDesign(object, newdata, type, se.fit, conf.int, conf.type,
                incl.non.slopes, non.slopes, kint,
                na.action, expand.na, center.terms, ...)