File: psm.s

package info (click to toggle)
design 2.0.12-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,408 kB
  • ctags: 1,283
  • sloc: asm: 13,945; fortran: 626; sh: 22; makefile: 12
file content (664 lines) | stat: -rw-r--r-- 21,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# psm for SV4/R is a modification of Therneau's survreg from survival5
# (survReg in S-Plus 6)   FEH 17Apr02

# SCCS @(#)survreg.s	5.8 07/10/00
#  The newest version of survreg, that accepts penalties and strata
#

psm <- if(.newSurvival.) {
  function(formula=formula(data),
           data=if(.R.)parent.frame() else sys.parent(),
           weights, subset, na.action=na.delete, dist='weibull', 
           init=NULL,  scale=0,
           control=if(!.R.)survReg.control() else survreg.control(),
           parms=NULL, model=FALSE, x=FALSE, y=TRUE, time.inc, ...)
  {
  
    if(.R.) {
      require('survival')
      if(!existsFunction('survreg.fit'))
        survreg.fit <- getFromNamespace('survreg.fit','survival')
    }
    call <- match.call()
    m <- match.call(expand=FALSE)
    if(dist=='extreme')
      warning('Unlike earlier versions of survreg, dist="extreme" does not fit\na Weibull distribution as it uses an identity link.  To fit the Weibull\ndistribution use the default for dist or specify dist="weibull".')
    m$na.action <- na.action  ## FEH
    temp <- c("", "formula", "data", "weights", "subset", "na.action")
    m <- m[ match(temp, names(m), nomatch=0)]
    if(.R.) m$drop.unused.levels <- TRUE
    m[[1]] <- as.name("model.frame")
    special <- c("strata", "cluster")
    Terms <-
      if(missing(data)) terms(formula, special)
      else              terms(formula, special, data=data)
    m$formula <- Terms
    ## Start FEH
    offs <- offset <- attr(Terms, "offset")
    if(!.R.) survreg.distributions <- survReg.distributions
    if(.R.) {
      dul <- .Options$drop.unused.levels
      if(!length(dul) || dul) {
        on.exit(options(drop.unused.levels=dul))
        options(drop.unused.levels=FALSE)
      }
    }
    m <- Design(eval(m, if(.R.)parent.frame() else sys.parent()))
    atrx <- attributes(m)
    nact <- atrx$na.action
    Terms <- atrx$terms
    atr   <- atrx$Design
    if(length(nact$nmiss)) {
      jia <- grep('%ia%',names(nact$nmiss), fixed=TRUE)
      if(length(jia)) nact$nmiss <- nact$nmiss[-jia]
      s <- if(length(offs)) names(nact$nmiss) !=  atrx$names[offs] else TRUE
      names(nact$nmiss)[s] <- 
        c(as.character(formula[2]), atr$name[atr$assume.code!=9])
    }
    ## End FEH
    
    weights <- model.extract(m, 'weights')
    Y <- model.extract(m, "response")

    ## Start FEH
    atY <- attributes(Y)
    ncy <- ncol(Y)
    maxtime <- max(Y[,-ncy])
    nnn <- c(nrow(Y),sum(Y[,ncy]))
    time.units <- attr(Y,'units')
    if(!length(time.units)) time.units <- "Day"
    if(missing(time.inc))	{
      time.inc <- switch(time.units,Day=30,Month=1,Year=1,maxtime/10)
      if(time.inc>=maxtime | maxtime/time.inc>25)
        time.inc <- max(pretty(c(0,maxtime)))/10
    }
    ## End FEH

    if (!inherits(Y, "Surv")) stop("Response must be a survival object")

    strats <- attr(Terms, "specials")$strata
    cluster<- attr(Terms, "specials")$cluster
    dropx <- NULL
    if (length(cluster)) {
      if (missing(robust)) robust <- TRUE
      tempc <- untangle.specials(Terms, 'cluster', 1:10)
      ord <- attr(Terms, 'order')[tempc$terms]
      if (any(ord>1)) stop ("Cluster can not be used in an interaction")
      cluster <- strata(m[,tempc$vars], shortlabel=TRUE)  #allow multiples
      dropx <- tempc$terms
    }
    if (length(strats)) {
      temp <- untangle.specials(Terms, 'strata', 1)
      dropx <- c(dropx, temp$terms)
      if (length(temp$vars)==1) strata.keep <- m[[temp$vars]]
      else strata.keep <- strata(m[,temp$vars], shortlabel=TRUE)
      strata <- as.numeric(strata.keep)
      nstrata <- max(strata)
    }
    else {
      nstrata <- 1
      strata <- 0
    }

    if (length(dropx)) newTerms<-Terms[-dropx]
    else               newTerms<-Terms
    X <- model.matrix(newTerms,m)

    ## Start FEH
    rnam <- dimnames(Y)[[1]]
    dimnames(X) <- list(rnam, c("(Intercept)",atr$colnames))
    ## End FEH except for 23nov02 and later changes

    n <- nrow(X)
    nvar <- ncol(X)

    if (length(offset)) offset <- as.numeric(m[[offset]])
    else                offset <- rep(0, n)

    if (is.character(dist)) {
      dlist <- survreg.distributions[[dist]]
      if (is.null(dlist)) stop(paste(dist, ": distribution not found"))
    }
    else if (is.list(dist)) dlist <- dist
    else stop("Invalid distribution object")
    if (is.null(dlist$dist)) {
      ## WHAT IS THIS?
      if (is.character(dlist$name) && is.function(dlist$init) &&
          is.function(dlist$deviance)) {}
      else stop("Invalid distribution object")
    }
    else {
      if (!is.character(dlist$name) || !is.character(dlist$dist) ||
          !is.function(dlist$trans) || !is.function(dlist$dtrans))
        stop("Invalid distribution object")
    }	

    type <- attr(Y, "type")
    if (type== 'counting') stop ("Invalid survival type")
    
    logcorrect <- 0   #correction to the loglik due to transformations
    if (!is.null(dlist$trans)) {
      tranfun <- dlist$trans
      exactsurv <- Y[,ncol(Y)] ==1
      if (any(exactsurv)) logcorrect <- sum(logb(dlist$dtrans(Y[exactsurv,1])))

      if (type=='interval') {
        if (any(Y[,3]==3))
          Y <- cbind(tranfun(Y[,1:2]), Y[,3])
        else Y <- cbind(tranfun(Y[,1]), Y[,3])
      }
      else {
        if (type=='left')
          Y <- cbind(tranfun(Y[,1]), 2-Y[,2])
        else
          Y <- cbind(tranfun(Y[,1]), Y[,2])
      }
      if (!all(is.finite(Y))) 
        stop("Invalid survival times for this distribution")
    }
    else {
      if (type=='left') Y[,2] <- 2- Y[,2]
      else
        if (type=='interval' && all(Y[,3]<3)) Y <- Y[,c(1,3)]
    }

    if (is.null(dlist$itrans)) itrans <- function(x) x
    else itrans <- dlist$itrans

    if (!is.null(dlist$scale)) {
      if (!missing(scale))
        warning(paste(dlist$name, 
                      "has a fixed scale, user specified value ignored"))
      scale <- dlist$scale
    }
    if (!is.null(dlist$dist)) dlist <- survreg.distributions[[dlist$dist]]

    if (missing(control))
      control <-
        if(!.R.) survReg.control(...)
        else survreg.control(...)

    if (scale < 0) stop("Invalid scale value")
    if (scale >0 && nstrata >1) 
      stop("Cannot have multiple strata with a fixed scale")

    ## Check for penalized terms
    pterms <- sapply(m, inherits, 'coxph.penalty')
    if (any(pterms)) {
      pattr <- lapply(m[pterms], attributes)
      ## 
      ## the 'order' attribute has the same components as 'term.labels'
      ##   pterms always has 1 more (response), sometimes 2 (offset)
      ## drop the extra parts from pterms
      temp <- c(attr(Terms, 'response'), attr(Terms, 'offset'))
      if (length(dropx)) temp <- c(temp, dropx+1)
      pterms <- pterms[-temp]
      temp <- match((names(pterms))[pterms], attr(Terms, 'term.labels'))
      ord <- attr(Terms, 'order')[temp]
      if (any(ord>1)) stop ('Penalty terms cannot be in an interaction')
      ##pcols <- (attr(X, 'assign')[-1])[pterms]
      assign<-attrassign(X,newTerms)
      pcols<-assign[-1][pterms]
  
      fit <- survpenal.fit(X, Y, weights, offset, init=init,
                           controlvals = control,
                           dist= dlist, scale=scale,
                           strata=strata, nstrat=nstrata,
                           pcols, pattr,assign, parms=parms)
    }
    else fit <-
      if(!.R.) survReg.fit(X, Y, weights, offset, 
                           init=init, controlvals=control,
                           dist= dlist, scale=scale, nstrat=nstrata, 
                           strata, parms=parms)
      else
        survreg.fit(X, Y, weights, offset, 
                    init=init, controlvals=control,
                    dist= dlist, scale=scale, nstrat=nstrata, 
                    strata, parms=parms)

    ## Next line: FEH added fitFunction='psm'
    if (is.character(fit))
      fit <- list(fail=fit, fitFunction='psm')  #error message
    else {
      if (scale==0) {
        nvar <- length(fit$coef) - nstrata
        fit$scale <- exp(fit$coef[-(1:nvar)])
        if (nstrata==1) names(fit$scale) <- NULL
        else names(fit$scale) <- levels(strata.keep)
        fit$coefficients  <- fit$coefficients[1:nvar]
        fit$idf  <- 1 + nstrata
      }
      else {
        fit$scale <- scale
        fit$idf  <- 1
      }
      fit$loglik <- fit$loglik + logcorrect
    }

    if(length(nact)) fit$na.action <- nact  ## FEH
    fit$df.residual <- n - sum(fit$df)
    fit$terms <- Terms
    fit$formula <- as.vector(attr(Terms, "formula"))
    fit$means <- apply(X,2, mean)
    fit$call <- call
    fit$dist <- dist
    fit$df.resid <- n-sum(fit$df) ##used for anova.survreg
    if (model) fit$model <- m
    if (x)     fit$x <- X
    ##if (y)     fit$y <- Y   #FEH
    if (length(parms)) fit$parms <- parms
    ## Start FEH
    ##if (any(pterms)) class(fit)<- c('survreg.penal', 'survreg')
    ##else class(fit) <- 'survreg'
    fit$assign <- DesignAssign(atr, 1, Terms)
    fit$formula <- formula
    if(y) {
      oldClass(Y) <- 'Surv'
      attr(Y,'type') <- atY$type
      fit$y <- Y
    }
    if(.newSurvival.) {
      scale.pred <-
        if(dist %in% c('weibull','exponential','lognormal','loglogistic'))
          c('log(T)','Survival Time Ratio')
        else 'T'
    } else {
      scale.pred <-
        if(substring(dist,1,3)=='log')
          c("log(T)","Survival Time Ratio")
        else "T"
    }

    logtest <- 2*diff(fit$loglik)
    Nn <- if(length(weights)) sum(weights) else nnn[1]
    R2.max <- 1 - exp(2*fit$loglik[1]/Nn)
    R2 <- (1 - exp(-logtest/Nn))/R2.max
    df <- length(fit$coef)-1
    P <- if(df==0) NA else 1-pchisq(logtest,df)
    stats <- c(nnn, logtest, df, P, R2)
    names(stats) <- c("Obs", "Events", "Model L.R.", "d.f.", "P",
                      "R2")
    if(length(weights)) stats <- c(stats, 'Sum of Weights'=sum(weights))
    fit <- c(fit, list(stats=stats, maxtime=maxtime, units=time.units,
                       time.inc=time.inc, scale.pred=scale.pred,
                       non.slopes=1, Design=atr, fail=FALSE,
                       fitFunction=c("psm", "survreg", "glm", "lm")))
    if (any(pterms)) {
      oldClass(fit) <-
        if(.SV4.) 'Design'
        else c('psm','Design','survreg.penal','survreg')
    }
    else {
      oldClass(fit) <-
        if(.SV4.) 'Design'
        else c('psm','Design','survreg')
    }
    ## End FEH
                       
    fit
    
  }
} else {
  function(formula=formula(data), data,
           subset, na.action=na.delete, method="fit",
           link="log",
           dist=c("extreme", "logistic", "gaussian", "exponential","rayleigh","t"),
           init=NULL, fixed=list(), control,
           model=FALSE, x=FALSE, y=FALSE, time.inc, ...)
  {

    call <- match.call()
    dist <- match.arg(dist)
    
    m <- match.call(expand=FALSE)
    m$dist <- m$link <- m$model <- m$x <- m$y <- m$... <-  NULL
    m$init <- m$fixed <- m$control <- m$time.inc <- NULL
    m$na.action <- na.action
    m[[1]] <- as.name("model.frame")
    X <- Design(eval(m, sys.parent()))
    atrx <- attributes(X)
    nact <- atrx$na.action
    if(method=="model.frame") return(X)
    Terms <- atrx$terms
    offs <- offset <- attr(Terms, "offset")
    atr   <- atrx$Design
    s <- if(length(offs)) names(nact$nmiss) !=  atrx$names[offs] else TRUE
    if(length(nact$nmiss))
      names(nact$nmiss)[s] <- 
        c(as.character(formula[2]), atr$name[atr$assume.code!=9])
    lnames <- if(.R.) c("logit","probit","cloglog","identity","log","sqrt",
                        "1/mu^2","inverse") else dimnames(glm.links)[[2]]
    link <- pmatch(link, lnames, 0)
    if(link==0) stop("invalid link function")
    link <- lnames[link]
    Y <- model.extract(X, "response")
    atY <- attributes(Y)
    ncy <- ncol(Y)
    maxtime <- max(Y[,-ncy])
    nnn <- c(nrow(Y),sum(Y[,ncy]))
    if (!inherits(Y, "Surv")) stop("Response must be a survival object")
    if(model) m <- X

    if(length(offset)) offset <- as.numeric(X[[offset]])
    else offset <- rep(0, nrow(X))

    X <- model.matrix(Terms, X)

    time.units <- attr(Y, "units")
    if(!length(time.units)) time.units <- "Day"
    if(missing(time.inc))	{
      time.inc <- switch(time.units,Day=30,Month=1,Year=1,maxtime/10)
      if(time.inc>=maxtime | maxtime/time.inc>25) time.inc <- max(pretty(c(0,maxtime)))/10
      				}
    rnam <- dimnames(Y)[[1]]
    dimnames(X) <- list(rnam, c("(Intercept)",atr$colnames))
    if(method=="model.matrix") return(X)
    n <- nrow(X)
    nvar <- ncol(X)

    type <- attr(Y, "type")
    linkfun <- if(.R.) make.link(link)$linkfun else
                       glm.links["link", link][[1]]
    if (type== 'counting') stop ("Invalid survival type")
    else if (type=='interval') {
      if (any(Y[,3]==3))
        Y <- cbind(linkfun(Y[,1:2]), Y[,3])
      else Y <- cbind(linkfun(Y[,1]), Y[,3])
    }
    else if (type=='left')
      Y <- cbind(linkfun(Y[,1]), 2-Y[,2])
    else     Y <- cbind(linkfun(Y[,1]), Y[,2])

    controlvals <- survreg.control()
    if(!missing(control)) controlvals[names(control)] <- control

    if(dist=="exponential") { fixed$scale <- 1; dist <- "extreme" }
    else if (dist=="rayleigh") { fixed$scale <- .5; dist <- "extreme" }

    sd <- survreg.distributions[[dist]]
    if (length(fixed)>0) {
      ifix <- match(names(fixed), names(sd$parms), nomatch=0)
      if (any(ifix==0))
        stop (paste("Parameter(s)", paste(names(fixed)[ifix==0]),
                    "in the fixed list not valid for this dist"))
    }
    if (is.list(init) && length(init)>0) {
      ifix <- match(names(init), c('eta',names(sd$parms)), nomatch=0)
      if (any(ifix==0))
        stop (paste("Parameter(s)", paste(names(init)[ifix==0]),
                    "in the init list not valid for this dist"))
    }
    
    sfit <- if(.R.) survreg.fit(X, Y, offset=offset, init=init,
                                controlvals=controlvals,
                                dist=dist, parms=fixed) else
    survreg.fit(X, Y, offset, init=init, controlvals=controlvals,
                dist= dist, fixed=fixed)

    if (is.character(sfit)) {
      cat("Failure in psm:\n",sfit,"\n")
      fit <- list(fail=TRUE, fitFunction='psm')
      oldClass(fit) <- if(.SV4.)'Design' else "psm"
      return(fit)
    }
    else {
      ## There may be more clever ways to do this, but ....
      ##  In order to make it look like IRLS, and get all the components
      ##  that I need for glm inheritance, do one step of weighted least
      ##  squares.
      eta <- c(X %*% sfit$coef[1:nvar]) + offset
      wt<- -sfit$deriv[,3]
      fit <- lm.wfit(X, eta + sfit$deriv[,2]/wt, wt, "qr", ...)

      ifun <- if(.R.) make.link(link)$linkinv else
                      glm.links["inverse",link][[1]]
      fit$fitted.values <- ifun(fit$fitted.values)
      fit$family <- c(name=dist, link=link, "")
      fit$linear.predictors <- eta
      fit$iter <- sfit$iter
      fit$parms <- sfit$parms
      fit$df.residual <- fit$df.residual-sum(!sfit$fixed)

      ## If singular.ok=T, there may be NA coefs.  The var matrix should
      ##   be an inversion of the "non NA" portion.

      var <- 0*sfit$imat
      good <- c(!is.na(fit$coef), rep(TRUE, ncol(var)-nvar))
      var[good,good] <- solve(qr(sfit$imat[good,good], tol=1e-12))
      fit$var <- var
      fit$fixed <- sfit$fixed
      dev <- sd$deviance(Y, fit$parms, sfit$deriv[,1])
      fit$dresiduals <- sign(fit$residuals)*sqrt(dev)
      fit$deviance <- sum(dev)
      fit$null.deviance <- fit$deviance +2*(sfit$loglik[2]- sfit$ndev[2])
      fit$loglik <- c(sfit$ndev[2], sfit$loglik[2])
    }

    if (length(nact)) fit$na.action <- nact

    i <- 1:nvar
    var <- var[i,i,drop=FALSE]	#omit scale row and col.
    fit$se.fit <-  drop(sqrt(((X %*% var) * X) %*% rep(1,nvar)))

    logtest <- fit$null.deviance - fit$deviance
    R2.max <- 1 - exp(-fit$null.deviance/nnn[1])
    R2 <- (1 - exp(-logtest/nnn[1]))/R2.max
    df <- length(fit$coef)-1
    P <- if(df==0) NA else 1-pchisq(logtest,df)
    stats <- c(nnn, logtest, df, P, R2)
    names(stats) <- c("Obs", "Events", "Model L.R.", "d.f.", "P", "R2")
    scale.pred <- if(link=="log") c("log(T)","Survival Time Ratio") else "T"
    fit <- c(fit, list(maxtime=maxtime, units=time.units,
                       time.inc=time.inc,scale.pred=scale.pred,
                       non.slopes=1,
                       fitFunction=c("psm", "survreg", "glm", "lm")))
    fit$Design <- atr
    fit$stats  <- stats
    oldClass(fit) <- if(.SV4.)'Design' else
    c("psm", "Design", "survreg", "glm", "lm")
    fit$terms <- Terms
    fit$formula <- as.vector(attr(Terms, "formula"))
    fit$call <- call
    fit$fail <- FALSE
    if (model) fit$model <- m
    if (x)     fit$x <- X
    if (y) {
      oldClass(Y) <- 'Surv'
      attr(Y,'type') <- atY$type
      fit$y <- Y
    }
    fit
  }
}

Hazard   <- function(object, ...) UseMethod("Hazard")
Survival <- function(object, ...) UseMethod("Survival")

Hazard.psm <- if(.newSurvival.) {
  function(object, ...)
  {
    dist <- object$dist
    g <- survreg.auxinfo[[dist]]$hazard
    formals(g) <- list(times=NA, lp=NULL, parms=logb(object$scale))
    g
  }
} else {
  function(object)
  {
    fam <- object$family
    dist <- fam["name"]
    transform <- fam[2]
    g <- survreg.auxinfo[[dist]]$hazard
    formals(g) <- list(times=NULL, lp=NULL,
                       parms=object$parms, transform=transform)
    g
  }
}

Survival.psm <- if(.newSurvival.) {
  function(object, ...)
  {
    dist <- object$dist
    g <- survreg.auxinfo[[dist]]$survival
    formals(g) <- list(times=NULL, lp=NULL, parms=logb(object$scale))
    g
  }
} else {
  function(object)
  {
    fam <- object$family
    dist <- fam["name"]
    transform <- fam[2]
    g <- survreg.auxinfo[[dist]]$survival
    formals(g) <- list(times=NULL, lp=NULL,
                       parms=object$parms, transform=transform)
    g
  }
}

Quantile.psm <- if(.newSurvival.) {
  function(object, ...)
  {
    dist <- object$dist
    g <- survreg.auxinfo[[dist]]$Quantile
    formals(g) <- list(q=.5, lp=NULL, parms=logb(object$scale))
    g
  }
} else {
  function(object, ...)
  {
    fam <- object$family
    dist <- fam["name"]
    transform <- fam[2]
    g <- survreg.auxinfo[[dist]]$quantile
    formals(g) <- list(q=.5, lp=NULL,
                       parms=object$parms, transform=transform)
    g
  }
}

Mean.psm <- if(.newSurvival.) {
  function(object, ...)
  {
    dist <- object$dist
    g <- survreg.auxinfo[[dist]]$mean
    formals(g) <- list(lp=NULL, parms=logb(object$scale))
    g
  }
} else {
  function(object, ...)
  {
    fam <- object$family
    dist <- fam["name"]
    transform <- fam[2]
    g <- survreg.auxinfo[[dist]]$mean
    formals(g) <- list(lp=NULL, parms=object$parms,
                       transform=transform)
    g
  }
}

predict.psm <- 
  function(object, newdata,
           type=c("lp","x","data.frame","terms","adjto","adjto.data.frame",
                  "model.frame"),
           se.fit=FALSE, conf.int=FALSE, conf.type=c('mean','individual'),
           incl.non.slopes, non.slopes, kint=1,
           na.action=na.keep, expand.na=TRUE, center.terms=TRUE, ...)
{
  predictDesign(object, newdata, type, se.fit, conf.int, conf.type,
                incl.non.slopes, non.slopes, kint,
                na.action, expand.na, center.terms, ...)
}



residuals.psm <- function(object, type = "censored.normalized", ...)
{
  type <- match.arg(type)
  if(type!='censored.normalized') {
    if(type=='score' && (.newSurvival.))
      stop('score residuals not implemented')
    ## TODO
    return(if(!.R.)residuals.survReg(object, type=type) else
                   residuals.survreg(object, type=type))
  }

  y <- object$y
  aty <- attributes(y)
  if(length(y)==0) stop('did not use y=T with fit')
  ncy <- ncol(y)
  if(.newSurvival.) {
    scale <- object$scale
    dist  <- object$dist
  } else {
    scale <- exp(object$parms)
    dist  <- object$family[1]
  }
  r <- (y[,-ncy,drop=FALSE]-object$linear.predictors)/scale
  r <- cbind(r, y[,ncy])
  ## Moved the following line here from bottom
  if(length(object$na.action)) r <- naresid(object$na.action, r)
  attr(r,'dist') <- dist
  attr(r,'type') <- aty$type
  attr(r,'units') <- ' '
  attr(r,'time.label') <- 'Normalized Residual'
  attr(r,'event.label') <- aty$event.label
  oldClass(r) <- c('residuals.psm.censored.normalized','Surv')
  g <- survreg.auxinfo[[dist]]$survival
  formals(g) <- if(.newSurvival.) list(times=NULL, lp=0, parms=0)
                else list(times=NULL, lp=0, parms=0, transform='identify')
  attr(r,'theoretical') <- g
  r
}

lines.residuals.psm.censored.normalized <- 
  function(x, n=100, lty=1, xlim=range(r[,-ncol(r)],na.rm=TRUE),
           lwd=3, ...)
{
  r <- x
  x <- seq(xlim[1], xlim[2], length=n)
  tx <- x
  if(.newSurvival.) {
    dist <- attr(r, 'dist')
    if(dist %in% c('weibull','loglogistic','lognormal')) tx <- exp(x)
    ## $survival functions log x
  }
  lines(x, attr(r,'theoretical')(tx), lwd=lwd, lty=lty)
  invisible()
}

survplot.residuals.psm.censored.normalized <- 
  function(fit, x, g=4, col, main, ...)
{
  r <- fit

  if(missing(x)) {
    survplot(survfit(r), conf='none', xlab='Residual', 
             col=if(missing(col))par('col') else col, ...)
    if(!missing(main)) title(main)
  } else {
    if(is.character(x)) x <- as.factor(x)
    if(!is.category(x) && length(unique(x))>5) x <- cut2(x, g=g)
    s <- is.na(r[,1]) | is.na(x)
    if(any(s)) {r <- r[!s,]; x <- x[!s,drop=TRUE]}
    survplot(survfit(r ~ x, data=data.frame(x,r)),  xlab='Residual',
             conf='none',
             col=if(missing(col))1:length(levels(x)) else par('col'), ...)
    if(missing(main)) {
      main <-
        if(length(lab <- attr(x,'label'))) lab 
        else {
          if(.R.) ''
          else deparse(substitute(x))
        }
    }
    if(main != '') title(main)
  }
  lines(r, lty=1, lwd=3)
  invisible()
}