1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#SCCS @(#)residuals.coxph.s 4.5 7/14/92
residuals.cph <-
function(object, type=c("martingale", "deviance", "score", "schoenfeld",
"dfbeta","dfbetas", "scaledsch"), collapse=FALSE, weighted=FALSE, ...)
{
type <- match.arg(type)
if(.R.) require('survival')
otype <- type
if(type=="dfbeta" | type=="dfbetas") type <- "score"
if(type=="scaledsch") type <- "schoenfeld"
n <- length(object$residuals)
rr <- object$residual
y <- object$y
x <- object$x
weights <- object$weights
strat <- attr(x,"strata")
method <- object$method
if (method=='exact' && (type=='score' || type=='schoenfeld'))
stop(paste(type, 'residuals are not available for the exact method'))
if(type!="martingale" & is.null(x))
stop("you must specify x=T in the fit")
if(type!="deviance" & type!="martingale" & is.null(y))
stop("you must specify y=T in the fit")
if(type!="martingale") {
ny <- ncol(y)
status <- y[,ny,drop=TRUE]
if (type != 'deviance') {
nvar <- ncol(x)
if (is.null(strat)) {
ord <- order(y[,ny-1], -status)
newstrat <- rep(0,n)
}
else {
ord <- order(strat, y[,ny-1], -status)
newstrat <- c(diff(as.numeric(strat[ord]))!=0 ,1)
}
newstrat[n] <- 1
# sort the data
x <- x[ord,]
y <- y[ord,]
score <- exp(object$linear.predictor)[ord]
weights <- if(length(weights)) weights[ord] else rep(1,n)
if (ny ==3) subs <- paste("agres", 1:2, sep='')
else subs <- paste("coxres",1:2, sep='')
}
}
#
# Now I have gotten the data that I need-- do the work
#
if (type=='schoenfeld') {
if (ny==2) {
mintime <- min(y[, 1])
if(mintime < 0) y <- cbind(2 * mintime - 1, y)
else y <- cbind(-1, y)
}
temp <- if(.R.)
.C("coxscho",
n=as.integer(n),
as.integer(nvar),
as.double(y),
resid= x,
score * weights,
as.integer(newstrat),
as.integer(method=='efron'),
double(3*nvar), PACKAGE="survival") else
.C(if(.SV4.)'S_coxscho' else "coxscho", ##14Nov00
n=as.integer(n),
as.integer(nvar),
as.double(y),
resid= x,
score * weights,
as.integer(newstrat),
as.integer(method=='efron'),
double(3*nvar))
deaths <- y[,3]==1
if (nvar==1) rr <- temp$resid[deaths]
else rr <- matrix(temp$resid[deaths,], ncol=nvar) #pick rows, and kill attr
if (length(object$strata))
attr(rr, "strata") <- table((strat[ord])[deaths])
time <- c(y[deaths,2]) # 'c' kills all of the attributes
if (is.matrix(rr)) dimnames(rr)<- list(time, names(object$coef))
else names(rr) <- time
if (otype=='scaledsch') {
ndead <- sum(deaths)
coef <- ifelse(is.na(object$coef), 0, object$coef)
if (nvar==1) rr <- rr*object$var * ndead + coef
else rr <- rr %*% object$var * ndead +
outer(rep(1,nrow(rr)), coef)
}
return(rr)
}
if (type=='score') {
if (ny==2) {
resid <- if(.R.)
.C("coxscore",
as.integer(n),
as.integer(nvar),
as.double(y),
x=as.double(x),
as.integer(newstrat),
as.double(score),
as.double(weights),
as.integer(method=='efron'),
resid= double(n*nvar),
double(2*nvar), PACKAGE="survival")$resid else
.C(if(.SV4.)'S_coxscore' else "coxscore",
as.integer(n),
as.integer(nvar),
as.double(y),
x=as.double(x),
as.integer(newstrat),
as.double(score),
as.double(weights),
as.integer(method=='efron'),
resid= double(n*nvar),
double(2*nvar))$resid
}
else {
resid <- if(.R.)
.C("agscore",
as.integer(n),
as.integer(nvar),
as.double(y),
as.double(x),
as.integer(newstrat),
as.double(score),
as.double(weights),
as.integer(method=='efron'),
resid=double(n*nvar),
double(nvar*6), PACKAGE="survival")$resid
.C(if(.SV4.)'S_agscore' else "agscore",
as.integer(n),
as.integer(nvar),
as.double(y),
as.double(x),
as.integer(newstrat),
as.double(score),
as.double(weights),
as.integer(method=='efron'),
resid=double(n*nvar),
double(nvar*6))$resid
}
if (nvar >1) {
rr <- matrix(0, n, nvar)
rr[ord,] <- matrix(resid, ncol=nvar)
dimnames(rr) <- list(names(object$resid), names(object$coef))
}
else rr[ord] <- resid
}
#Expand out the missing values in the result
if (!is.null(object$na.action)) {
rr <- naresid(object$na.action, rr)
if (is.matrix(rr)) n <- nrow(rr)
else n <- length(rr)
if (type=='deviance') status <- naresid(object$na.action, status)
}
# Collapse if desired
if (!missing(collapse)) {
if (length(collapse) !=n) stop("Wrong length for 'collapse'")
rr <- rowsum(rr, collapse)
}
# Deviance residuals are computed after collapsing occurs
if (type=='deviance')
rr <- sign(rr) *sqrt(-2* (rr+
ifelse(status==0, 0, status*logb(status-rr))))
if (otype=='dfbeta') rr %*% object$var
else if (otype=='dfbetas') (rr %*% object$var) %*%
diag(sqrt(1/diag(object$var)))
else rr
}
|