1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
calibrate.default <- function(fit, predy,
method=c("boot","crossvalidation",".632","randomization"),
B=40, bw=FALSE, rule=c("aic","p"),
type=c("residual","individual"),
sls=.05, pr=FALSE, kint, smoother="lowess", ...) {
call <- match.call()
method <- match.arg(method)
rule <- match.arg(rule)
type <- match.arg(type)
ns <- num.intercepts(fit)
if(missing(kint)) kint <- floor((ns+1)/2)
clas <- attr(fit,"class")
model <- if(any(clas=="lrm"))"lr" else if(any(clas=="ols"))"ol" else
stop("fit must be from lrm or ols")
lev.name <- NULL
yvar.name <- as.character(formula(fit))[2]
y <- fit$y
n <- length(y)
if(length(y)==0) stop("fit did not use x=T,y=T")
if(model=="lr") {
y <- factor(y); lev.name <- levels(y)[kint+1]; fit$y <- as.integer(y)-1
## was category(y) y-1 11Apr02
}
predicted <- if(model=="lr")
1/(1+exp(-(fit$linear.predictors-fit$coef[1]+fit$coef[kint]))) else
fit$linear.predictors
if(missing(predy)) {
if(n<11) stop("must have n>10 if do not specify predy")
p <- sort(predicted)
predy <- seq(p[5],p[n-4],length=50)
p <- NULL
}
penalty.matrix <- fit$penalty.matrix
cal.error <- function(x, y, iter, smoother, predy, kint, model, ...) {
if(model=="lr") {
x <- 1/(1+exp(-x))
y <- y>=kint
}
smo <- if(is.function(smoother)) smoother(x,y) else lowess(x,y,iter=0)
cal <- if(.R.) approx(smo, xout=predy, ties=function(x)x[1])$y else
approx(smo, xout=predy)$y
## 11Apr01 .R. lowess has duplicates
# if(iter==0) assign(".orig.cal",cal,where=1) 17Apr01
if(iter==0) storeTemp(cal,".orig.cal")
cal-predy
}
fitit <- function(x, y, model, penalty.matrix=NULL, xcol=NULL, ...) {
if(length(penalty.matrix) && length(xcol)) {
if(model=='ol') xcol <- xcol[-1]-1 # take off intercept position
penalty.matrix <- penalty.matrix[xcol,xcol,drop=FALSE]
}
switch(model,
lr=lrm.fit(x, y, penalty.matrix=penalty.matrix,tol=1e-13),
ol=c(if(length(penalty.matrix)==0) lm.fit.qr.bare(x, y, intercept=FALSE) else
lm.pfit(x, y,
penalty.matrix=penalty.matrix),fail=FALSE))
## Was lm.fit.qr 14Sep00
}
z <- predab.resample(fit, method=method, fit=fitit, measure=cal.error,
pr=pr, B=B, bw=bw, rule=rule, type=type, sls=sls,
non.slopes.in.x=model=="ol",
smoother=smoother, predy=predy, model=model, kint=kint,
penalty.matrix=penalty.matrix, ...)
z <- cbind(predy, calibrated.orig=.orig.cal,
calibrated.corrected=.orig.cal-z[,"optimism"],
z)
structure(z, class="calibrate.default", call=call, kint=kint, model=model,
lev.name=lev.name, yvar.name=yvar.name, n=n, freq=fit$freq,
non.slopes=ns, B=B, method=method,
predicted=as.single(predicted), smoother=smoother)
}
print.calibrate.default <- function(x, ...) {
at <- attributes(x)
cat("\nEstimates of Calibration Accuracy by ",at$method," (B=",at$B,")\n\n",
sep="")
dput(at$call)
if(at$model=="lr") {
lab <- paste("Pr{",at$yvar.name,sep="")
if(at$non.slopes==1) lab <- paste(lab,"=",at$lev.name,"}",sep="") else
lab <- paste(lab,">=",at$lev.name,"}",sep="")
} else lab <- at$yvar.name
cat("\nPrediction of",lab,"\n\n")
predicted <- at$predicted
if(length(predicted)) { ## for downward compatibility
s <- !is.na(x[,'predy'] + x[,'calibrated.corrected'])
err <- predicted - approx(x[s,'predy'],x[s,'calibrated.corrected'],
xout=predicted)$y
cat('\nn=',length(err), ' Mean absolute error=',
format(mean(abs(err),na.rm=TRUE)),' Mean squared error=',
format(mean(err^2,na.rm=TRUE)), '\n0.9 Quantile of absolute error=',
format(quantile(abs(err),.9,na.rm=TRUE)), '\n\n',sep='')
}
print.matrix(x)
invisible()
}
plot.calibrate.default <- function(x, xlab, ylab, xlim, ylim, legend=TRUE,
subtitles=TRUE, ...){
at <- attributes(x)
if(missing(ylab)) ylab <- if(at$model=="lr") "Actual Probability" else
paste("Observed",at$yvar.name)
if(missing(xlab)) {
if(at$model=="lr") {
xlab <- paste("Predicted Pr{",at$yvar.name,sep="")
if(at$non.slopes==1) {
xlab <- if(at$lev.name=="TRUE") paste(xlab,"}",sep="") else
paste(xlab,"=",at$lev.name,"}",sep="")
} else
xlab <- paste(xlab,">=",at$lev.name,"}",sep="")
} else xlab <- paste("Predicted",at$yvar.name)
}
p <- x[,"predy"]
p.app <- x[,"calibrated.orig"]
p.cal <- x[,"calibrated.corrected"]
if(missing(xlim) & missing(ylim)) xlim <- ylim <- range(c(p,p.app,p.cal),
na.rm=TRUE) else {
if(missing(xlim)) xlim <- range(p)
if(missing(ylim)) ylim <- range(c(p.app,p.cal,na.rm=TRUE))
}
plot(p, p.app, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, type="n", ...)
predicted <- at$predicted
if(length(predicted)) { ## for downward compatibility
s <- !is.na(p + p.cal)
err <- predicted - approx(p[s],p.cal[s],xout=predicted)$y
cat('\nn=',n <- length(err), ' Mean absolute error=',
format(mae <- mean(abs(err),na.rm=TRUE)),' Mean squared error=',
format(mean(err^2,na.rm=TRUE)), '\n0.9 Quantile of absolute error=',
format(quantile(abs(err),.9,na.rm=TRUE)), '\n\n',sep='')
if(subtitles) title(sub=paste('Mean absolute error=',format(mae),
' n=',n,sep=''), cex=.65, adj=1)
scat1d(predicted)
}
lines(p, p.app, lty=3)
lines(p, p.cal, lty=1)
abline(a=0,b=1,lty=2)
if(subtitles) title(sub=paste("B=",at$B,"repetitions,",at$method),adj=0)
if(!(is.logical(legend) && !legend)) {
if(is.logical(legend)) legend <- list(x=xlim[1]+.55*diff(xlim), #was .57
y=ylim[1]+.32*diff(ylim))
legend(legend, c("Apparent","Bias-corrected","Ideal"),
lty=c(3,1,2), bty="n")
}
invisible()
}
|