1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
#Requires fastbw
predab.resample <- function(fit.orig, fit, measure,
method=c("boot","crossvalidation",".632","randomization"),
bw=FALSE, B=50, pr=FALSE, rule="aic", type="residual",
sls=.05, aics=0, strata=FALSE, tol=1e-12,
non.slopes.in.x=TRUE, kint=1, cluster, subset, group=NULL, ...) {
method <- match.arg(method)
# .Options$digits <- 4 14Sep00
oldopt <- options(digits=4)
on.exit(options(oldopt))
#Following logic prevents having to load a copy of a large x object
if(any(match(c("x","y"),names(fit.orig),0)==0))
stop("must have specified x=T and y=T on original fit")
fparms <- fit.orig[c("non.slopes","assign","terms","Design")]
if(!length(fparms$Design))fparms$Design <- getOldDesign(fit.orig) #10Jul01
non.slopes <- num.intercepts(fit.orig)
x.index <- if(non.slopes==0 || non.slopes.in.x) function(i,...) i else
function(i, ns) { if(any(i>ns)) i[i>ns]-ns else NULL } #23May94
Xb <- function(x, b, non.slopes, non.slopes.in.x, n, kint=1) {
if(length(x)) {
if(non.slopes==0 || non.slopes.in.x) x %*% b else
b[kint] + x %*% b[-(1:non.slopes)]
} else {
if(non.slopes==0) rep(0,n) else rep(b[kint],n)
}
}
nac <- fit.orig$na.action
x <- as.matrix(fit.orig$x)
n <- nrow(x)
attr(x,'class') <- NULL #Remove model.matrix class for subset operations later
y <- fit.orig$y
y <- as.matrix(if(is.category(y)) oldUnclass(y) else y) ##25Mar98
multi <- !missing(cluster) # some subjects have multiple records now
# 19Mar99:
if(length(group)) {
if(multi || method!='boot')
stop('group is currently allowed only when method="boot" and cluster is not given')
if(length(group) > n) {
## Missing observations were deleted during fit
if(length(nac)) {
j <- !is.na(naresid(nac, y) %*% rep(1,ncol(y)))
group <- group[j]
}
}
if(length(group) != n)
stop('length of group does not match # rows used in fit')
group.inds <- split(1:n, group) ## see bootstrap()
ngroup <- length(group.inds)
} else ngroup <- 0
if(multi) {
if(method!='boot') stop('cluster only implemented for method="boot"')
if(length(cluster) > n) {
## Missing observations were deleted during fit
if(length(nac)) {
j <- !is.na(naresid(nac, y) %*% rep(1,ncol(y)))
cluster <- cluster[j]
}
}
if(length(cluster) != n)
stop('length of cluster does not match # rows used in fit')
if(any(is.na(cluster))) stop('cluster has NAs')
n.orig <- length(unique(cluster))
cl.samp <- split(1:n, cluster)
} else n.orig <- n
if(!missing(subset)) {
if(length(subset) > n && length(nac)) {
j <- !is.na(naresid(nac, y) %*% rep(1,ncol(y)))
subset <- subset[j]
}
if(length(subset) != n && all(subset>=0))
stop('length of subset does not match # rows used in fit')
if(any(is.na(subset))) stop('subset has NAs')
if(!is.logical(subset)) {
subset2 <- rep(FALSE, n)
subset2[subset] <- TRUE
subset <- subset2
subset2 <- NULL
}
}
if(strata) {
stra <- attr(fit.orig$x, "strata")
if(!length(stra)) stra <- rep(1, nrow(y))
y <- cbind(y, stra) }
if(bw) {
# fit.orig <- fit(x,y,iter=0,tol=tol,...)
if(fit.orig$fail) return()
cat("\n Backwards Step-down - Original Model\n")
fbw <- fastbw(fit.orig,rule=rule,type=type,sls=sls,aics=aics,eps=tol)
print(fbw)
orig.col.kept <- fbw$parms.kept
if(!length(orig.col.kept))stop("no variables kept in original model")
xcol <- x.index(orig.col.kept, non.slopes)
fit.orig <- fit(x[,xcol,drop=FALSE], y, iter=0, tol=tol, xcol=xcol, ...)
} else
orig.col.kept <- 1:length(fit.orig$coef)
b <- fit.orig$coef
xcol <- x.index(orig.col.kept, non.slopes)
xb <- Xb(x[,xcol,drop=FALSE], b, non.slopes, non.slopes.in.x, n,
kint=kint)
index.orig <- if(missing(subset))measure(xb,
y, fit=fit.orig,
iter=0, evalfit=TRUE, fit.orig=fit.orig, kint=kint, ...) else
measure(xb[subset], y[subset,,drop=FALSE], fit=fit.orig,
iter=0, evalfit=FALSE, fit.orig=fit.orig, kint=kint, ...)
test.stat <- single(length(index.orig))
train.stat <- test.stat
#name <- attr(fparms$terms,"Design")$name 10Jul01
name <- fparms$Design$name
if(bw) {
varin <- matrix("", nrow=B, ncol=length(name))
nvarin <- rep(NA,B)
}
j <- 0
num <- 0
if(method=="crossvalidation") {
per.group <- n/B
if(per.group<2)stop("B>n/2")
sb <- sample(n, replace=FALSE) }
#Cross-val keeps using same random set of indexes, without replacement
ntest <- 0 #Used in getting weighted average for .632 estimator
if(method==".632")
{
#Must do assignments ahead of time so can weight estimates
#according to representation in bootstrap samples
S <- matrix(integer(1), nrow=n, ncol=B)
W <- matrix(TRUE, nrow=n, ncol=B)
for(i in 1:B)
{
S[,i] <- s <- sample(n, replace=TRUE)
W[s,i] <- FALSE #now these obs are NOT omitted
}
nomit <- drop(W %*% rep(1,ncol(W))) #no. boot samples omitting each obs
if(min(nomit)==0) stop("not every observation omitted at least once in bootstrap samples.\nRe--run with larger B")
W <- apply(W/nomit, 2, sum)/n
cat("\n\nWeights for .632 method (ordinary bootstrap weights ",
format(1/B),")\n",sep="")
print(summary(W))
}
if(!pr) cat("Iteration:\n")
for(i in 1:B) {
if(!pr) { cat(i,""); if(i %% 20 == 0) cat("\n") }
switch(method,
crossvalidation=
{ is <- 1 + round((i-1)*per.group)
ie <- min(n, round(is+per.group-1))
test <- sb[is:ie]
train <- -test }, #cross-val
boot= {
if(ngroup) {
train <- integer(n.orig)
for(si in 1:ngroup) {
gi <- group.inds[[si]]
lgi <- length(gi)
train[gi] <- if(lgi==1) gi else sample(gi, lgi, replace=TRUE)
## 6May99: sample behaves differently when first arg is a single integer
}
} else {
train <- sample(n.orig, replace=TRUE)
if(multi) train <- unlist(cl.samp[train])
}
test <- 1:n }, #boot
".632"= { train <- S[,i]
test <- -train}, #boot .632
randomization=
{ train <- sample(n, replace=FALSE)
test <- 1:n }) #randomization
xtrain <- if(method=="randomization") 1:n else train
f <- fit(x[xtrain,,drop=FALSE], y[train,,drop=FALSE], iter=i, tol=tol,...)
f$assign <- NULL #Some programs put a NULL assign (e.g. ols.val fit)
fail <- f$fail
if(!fail) {
## Following if..stop was before f$assign above 28Apr99
if((ni <- num.intercepts(f)) != non.slopes)
stop(paste('\nA training sample has a different number of intercepts (',
ni,')\n than the original model fit (',non.slopes,'). \nYou probably fit an ordinal model with sparse cells and a re-sample\ndid not select at least one observation for each value of Y.\nAdd the argument group=y where y is the response variable.\nThis will force balanced sampling on levels of y.',sep=''))
clf <- attr(f,"class") # class is removed by c() below
f[names(fparms)] <- fparms # 23Dec99
## f <- c(f, fparms) 23Dec99
attr(f, "class") <- clf
if(!bw) {
coef <- f$coef # 14Sep00, coefficients->coef 14Aug01
col.kept <- 1:length(coef)
} else {
f <- fastbw(f,rule=rule,type=type,
sls=sls,aics=aics,eps=tol)
if(pr)print(f)
varin[j+1, f$factors.kept] <- "*" #did have drop=F
nvarin[j+1] <- length(f$factors.kept)
col.kept <- f$parms.kept
if(!length(col.kept)) f <- fit(NULL, y[train,,drop=FALSE],
iter=i, tol=tol,...) else {
xcol <- x.index(col.kept, non.slopes)
f <- fit(x[xtrain,xcol,drop=FALSE], y[train,,drop=FALSE],
iter=i, tol=tol, xcol=xcol, ...) }
if(f$fail) fail <- TRUE else coef <- f$coef #14Sep00 14Aug01
} }
if(!fail) {
j <- j+1
xcol <- x.index(col.kept, non.slopes)
xb <- Xb(x[,xcol,drop=FALSE], coef, non.slopes, non.slopes.in.x, n,
kint=kint)
if(missing(subset)) {
train.statj <- measure(xb[xtrain], y[train,,drop=FALSE],
fit=f, iter=i,fit.orig=fit.orig,evalfit=TRUE,
kint=kint, ...)
test.statj <- measure(xb[test], y[test,,drop=FALSE], fit=f,
iter=i,fit.orig=fit.orig, evalfit=FALSE, kint=kint, ...)
} else {
ii <- xtrain
if(any(ii<0)) ii <- (1:n)[ii]
ii <- ii[subset[ii]]
train.statj <- measure(xb[ii], y[ii,,drop=FALSE],
fit=f, iter=i, fit.orig=fit.orig,evalfit=FALSE,
kint=kint, ...)
ii <- test
if(any(ii<0)) ii <- (1:n)[ii]
ii <- ii[subset[ii]]
test.statj <- measure(xb[ii], y[ii,,drop=FALSE], fit=f,
iter=i, fit.orig=fit.orig, evalfit=FALSE, kint=kint, ...)
}
na <- is.na(train.statj+test.statj)
num <- num + !na
if(pr) print(cbind(training=train.statj, test=test.statj))
train.statj[na] <- 0
test.statj[na] <- 0
if(method==".632")
{
##wt <- length(xb[test])*(!na) else wt <- 1
wt <- W[i]
if(any(na))warning('method=".632" does not properly handle missing summary indexes')
}
else wt <- 1
train.stat <- train.stat + train.statj
test.stat <- test.stat + test.statj * wt
ntest <- ntest + 1 #was +wt
}
}
if(!pr)cat("\n\n")
if(j!=B) cat("\nDivergence or singularity in",B-j,"samples\n")
train.stat <- train.stat/num
if(method!=".632") {
test.stat <- test.stat/num
optimism <- train.stat - test.stat
} else {
optimism <- .632 * (index.orig - test.stat)
}
res <- cbind(index.orig=index.orig,training=train.stat,test=test.stat,
optimism=optimism,index.corrected=index.orig-optimism,n=num)
if(bw) {
varin <- varin[1:j, ,drop=FALSE]
nvarin <- nvarin[1:j]
# dimnames(varin) <- list(rep("",j), abbreviate(name,1:2))
dimnames(varin) <- list(rep("",j), name)
cat("\n Factors Retained in Backwards Elimination\n\n")
print(varin, quote=FALSE)
cat("\n Frequencies of Numbers of Factors Retained\n\n")
tvarin <- table(nvarin)
if(.R.) names(dimnames(tvarin)) <- NULL
print(tvarin)
}
res
}
|