File: predict.Design.s

package info (click to toggle)
design 2.0.9-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,412 kB
  • ctags: 1,385
  • sloc: asm: 13,815; fortran: 626; sh: 28; makefile: 12
file content (419 lines) | stat: -rw-r--r-- 15,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
##newdata=data frame, vector,  matrix, or list.  All but first assume data
##need coding, e.g. categorical variables are given as integers
##variable missing for all obs -> use adjust-to value in limits
##(means (parms) for matrx)

## Renamed from predict.Design 6dec02; let predict.Design be
## dispatcher (see Design.Misc.s)

predictDesign <- function(fit, newdata=NULL,
   type=c("lp","x","data.frame","terms","adjto","adjto.data.frame",
    "model.frame"),
   se.fit=FALSE, conf.int=FALSE, conf.type=c('mean','individual'),
   incl.non.slopes=NULL, non.slopes=NULL, kint=1,
   na.action=na.keep, expand.na=TRUE, center.terms=TRUE, ...)	{

type <- match.arg(type)
conf.type <- match.arg(conf.type)
## R does not preserve missing(x):   31jul02
mnon.slopes <- missing(non.slopes) || !length(non.slopes)  # was missing( ) 6jan04


at <- fit$Design
if(!length(at)) at <- getOldDesign(fit)
assume <- at$assume.code
Limval <- Getlim(at, allow.null=TRUE, need.all=FALSE)
Values <- Limval$values
non.ia <- assume!=9
non.strat <- assume!=8
f <- sum(non.ia)
nstrata <- sum(assume==8)
somex <- any(non.strat)
rnam <- NULL
cox <- inherits(fit, "cph") ||
 (length(fit$fitFunction) && any(fit$fitFunction=='cph'))  ##14Nov00 22May01
naa <- fit$na.action
if(!expand.na) naresid <- function(a,b) b #don't really call naresid if drop NAs

parms <- at$parms
name <- at$name
coeff <- fit$coefficients
nrp <- num.intercepts(fit)

if(mnon.slopes) {
   non.slopes <- rep(0,nrp)
   non.slopes[kint] <- 1   #13Sep94
}
else if(nrp>0 & length(non.slopes)!=nrp)
stop("length of non.slopes incompatible with fit")

int.pres <- nrp>0  # was !(cox|lrm)
if(somex) cov <- Varcov(fit,regcoef.only=TRUE)    #remove scale params
# if(missing(incl.non.slopes))   6jan04
  if(missing(incl.non.slopes) || !length(incl.non.slopes))
   incl.non.slopes <- !mnon.slopes | (!missing(kint)) | 
                      int.pres | type!="x"
##added 12Feb93   !missing() added 18Feb93, 2nd one 13Sep94
int.pres <- int.pres & incl.non.slopes

assign <- fit$assign

nama <- names(assign)[1]
asso <- 1*(nama=="Intercept" | nama=="(Intercept)")

Center <- if(cox)fit$center else 0

oldopts <- options(contrasts=c(factor="contr.treatment",ordered="contr.poly"),
   Design.attr=at)

##20Nov00   In SV4 options(two lists) causes problems
on.exit({options(contrasts=oldopts$contrasts)
         options(Design.attr=NULL)})

## Terms <- delete.response(terms(attr(fit$terms,"formula"), specials="strat"))

Terms <- if(.R.) delete.response(terms(formula(fit), specials='strat')) else
     delete.response(terms(fit$terms, specials="strat"))  ## 17Apr02  30may02
attr(Terms,"response") <- 0
attr(Terms,"intercept") <- 1    # was int.pres 12Feb93
##Need intercept whenever design matrix is generated to get
##current list of dummy variables for factor variables

stra <- attr(Terms, "specials")$strat

offset <- 0	# used if no newdata

Terms.ns <- Terms
if(length(stra))	{
  Terms.ns <- Terms[-stra]	#Uses [.terms function. 3.0 did not add 1!
  ## was [1-stra], changed 7June94

  ## For some reason attr(...) <- pmin(attr(...)) changed a detail
  ## in factors attribute in R but R and SV4 don't seem to need this
  ## anyway   1may02
  if(!.R.) {
    tfac <- attr(Terms.ns,'factors')
    if(length(tfac) && any(tfac > 1))
      attr(Terms.ns,'factors') <- pmin(tfac, 1)
  }
}

if(conf.int) {
  vconstant <- 0
  if(conf.type=='individual') {
    vconstant <- fit$stats['Sigma']^2
    if(is.na(vconstant))
      stop('conf.type="individual" requires that fit be from ols')
  }
  zcrit <- if(length(idf <- fit$df.residual)) qt((1+conf.int)/2, idf) else
           qnorm((1+conf.int)/2)
}

if(type!="adjto" & type!="adjto.data.frame") {
  X <- NULL
  if(missing(newdata) || !length(newdata)) {
    if(type=="lp" && length(fit$linear.predictors)) {
      LP <- naresid(naa, fit$linear.predictors)   #changed 8June94
      if(kint>1) LP <- LP-fit$coef[1]+fit$coef[kint]  #added 13Sep94
      if(length(stra <- attr(fit$linear.predictors,"strata")))
        attr(LP, "strata") <- naresid(naa, stra)
      if(!se.fit && !conf.int)return(LP)  ##7Mar99
      else if(length(fit$se.fit)) {
        if(kint>1)
          warning("se.fit is retrieved from the fit but it corresponded to kint=1")
        retlist <- list(linear.predictors=LP, se.fit=naresid(naa,fit$se.fit))
        if(conf.int) {
          plminus <- zcrit*sqrt(retlist$se.fit^2 + vconstant)
          retlist$lower <- LP - plminus
          retlist$upper <- LP + plminus
        }
        return(retlist)
      }
    }
    else if(type=="x") return(structure(naresid(naa,fit$x),
              strata=if(length(stra <- attr(fit$x,"strata")))
              naresid(naa,stra) else NULL))
    X <- fit$x
    rnam <- dimnames(X)[[1]]
    if(!any(names(fit)=="x")) X <- NULL  #fit$x can get fit$xref
    if(!length(X))
      stop("newdata not given and fit did not store x")
  }
  if(!length(X)) {
    if(!is.data.frame(newdata))	{
      if(is.list(newdata)) {
        loc <- if(!length(names(newdata))) 1:f else name[assume!=9]
        new <- matrix(if(.R.)double(1) else single(1),
                      nrow=length(newdata[[1]]),
                      ncol=length(newdata))
        for(j in 1:ncol(new)) new[,j] <- newdata[[loc[j]]]
        newdata <- new
      }
      if(!is.matrix(newdata)) newdata <- matrix(newdata, ncol=f)
      if(ncol(newdata)!=f)stop("# columns in newdata not= # factors in design")
      X <- list()
      k <- 0
      ii <- 0
      for(i in (1:length(assume))[non.ia]) {
        ii <- ii+1
        xi <- newdata[,ii]
        as <- assume[i]
        allna <- all(is.na(xi))
        ##	   if(as!=10 && allna) xi <- at$limits[3,ii]
        if(as==5 | as==8)	{
          xi <- as.integer(xi)
          levels(xi) <- parms[[name[i]]]
          oldClass(xi) <- "factor"
        }
        else if(as==10) {
          if(i==1) ifact <- 1
          else ifact <- 1 + sum(assume[1:(i-1)]!=8)
          ##	Accounts for assign not being output for strata factors
          ncols <- length(assign[[ifact+asso]])
          if(allna) {
            xi <- matrix(if(.R.)double(1) else single(1),
                         nrow=length(xi), ncol=ncols)
            for(j in 1:ncol(xi)) xi[,j] <- parms[[name[i]]][j]	}
          else xi <- matrix(if(.R.)xi else as.single(xi),
                            nrow=length(xi), ncol=ncols) }
        ##	Duplicate single value for all parts of matrix
        k <- k + 1
        X[[k]] <- xi
      }
      names(X) <- name[non.ia]
      attr(X, "row.names") <- as.character(1:nrow(newdata))
      oldClass(X) <- "data.frame"
      newdata <- X
      ##Note: data.frame() converts matrix variables to individual variables
      if(type=="data.frame") return(newdata)
    }
    else {
      ##Need to convert any factors to have all levels in original fit
      ##Otherwise, wrong dummy variables will be generated by model.matrix
      nm <- names(newdata)
      for(i in 1:ncol(newdata))	{
        j <- match(nm[i], name)
        if(!is.na(j)) {
          asj <- assume[j]
          w <- newdata[,i]
          V <- NULL
          if(asj==5 | asj==7 | asj==8 | 
             (length(V <- Values[[name[j]]]) && is.character(V))) {
            if(length(Pa <- parms[[name[j]]])) V <- Pa   #added 8Apr94
            ## if(is.null(V)) V <- parms[[name[j]]]  #subtracted 8Apr94
            newdata[,i] <- factor(w, V)
            ##Handles user specifying numeric values without quotes, that
            ##are levels
            ww <- is.na(newdata[,i]) & !is.na(oldUnclass(w))
            if(any(ww)) 	{
              cat("Error in predictDesign: Values in",names(newdata)[i],
                  "not in",V,":\n")
              print(as.character(w[ww]),quote=FALSE); stop()
            }
          }
        }
      }
    }
  
    newdata <- addOffset4ModelFrame(Terms,newdata)  ## 23nov02
    X <- model.frame(Terms, newdata, na.action=na.action, ...)
    if(type=="model.frame") return(X)
    naa <- attr(X, "na.action")
    rnam <- row.names(X)

    offs <- attr(Terms, "offset")
    if(!length(offs)) offset <- rep(0, length(rnam))
    else offset <- X[[offs]]

    ## if(ncol(X) != sum(non.ia))stop("improperly formed model frame")
    strata <- list()
    nst <- 0
    ii <- 0  ## 23nov02
    for(i in setdiff(1:ncol(X),offs)) {   ## setdiff() was 1:ncol(X) 23nov02
      ii <- ii + 1
      xi <- X[[i]]
      asi <- attr(xi,"assume.code")
      as <- assume[ii]              ## was i 23nov02
      if(!length(asi) && as==7) {
        attr(X[,i],"contrasts") <- 
          attr(scored(xi,name=name[ii]),"contrasts") ## was i 23nov02
        if(length(xi)==1) warning("a bug in model.matrix can produce incorrect results\nwhen only one observation is being predicted for an ordered variable")
      }

      if(as==8) {
        nst <- nst+1
        strata[[nst]] <- paste(name[ii],"=",parms[[name[ii]]][X[,i]],sep="")
        ## was name[i] 23nov02
      }
    }
    if(!somex) X <- NULL
    else if(int.pres && nrp==1) X <- model.matrix(Terms.ns, X) #nrp Jan94
    else X <- model.matrix(Terms.ns, X)[,-1,drop=FALSE]		#12Feb93
    if(nstrata>0)	{
      names(strata) <- paste("S",1:nstrata,sep="")
      strata <- factor(interaction(as.data.frame(strata),drop=TRUE),
                       levels=fit$strata)
    }
  }

  else strata <- attr(X,"strata")

  added.col <- if(incl.non.slopes & (nrp>1 | !int.pres)) nrp else 0 #nrp>1 Jan94
  ## & !scale.pres removed from following statement 20Feb93
  if(incl.non.slopes & nrp>0 & somex & added.col>0) {
    xx <- matrix(if(.R.)double(1) else single(1),
                 nrow=nrow(X),ncol=added.col)
    for(j in 1:nrp) xx[,j] <- non.slopes[j]
  }
  else xx <- NULL
}

##For models with multiple intercepts, delete elements of covariance matrix
##containing unused intercepts
elements.to.delete <- 9999
if(somex && nrp>1) {
  i <- (1:nrp)[non.slopes==0]; cov <- cov[-i,-i,drop=FALSE] 
  elements.to.delete <- i
}

if(type=="adjto" | type=="adjto.data.frame" | (center.terms && type=="terms")| 
   (cox & (se.fit | conf.int))) {
  ##Form design matrix for adjust-to values
  adjto <- list()
  ii <- 0
  for(i in (1:length(assume))[non.ia]) {
    ii <- ii+1
    xi <- Getlimi(name[i], Limval, need.all=TRUE)[2] #was =F  5Feb94
    if(assume[i]==5 | assume[i]==8) xi <- factor(xi,parms[[name[i]]])
    else if(assume[i]==7) xi <- scored(xi, name=name[i])
    else if(assume[i]==10) xi <- matrix(parms[[name[i]]],nrow=1) #matrx col medians
    adjto[[ii]] <- xi
  }
  names(adjto) <- name[non.ia]
  ##   adjto <- data.frame(adjto,check.names=FALSE)
  ##   data.frame will take matrix factors and convert into individual vars
  attr(adjto,"row.names") <- "1"
  oldClass(adjto) <- "data.frame"
  if(type=="adjto.data.frame") return(adjto)
  adjto <- addOffset4ModelFrame(Terms, adjto) ## 23nov02
  adjto <- model.frame(Terms, adjto)
  adjto <- if(int.pres) model.matrix(Terms.ns, adjto) else
           model.matrix(Terms.ns,adjto)[,-1,drop=FALSE]   # -1 added 12Feb93
  ## added drop=FALSE 27feb03
  if(type=="adjto")	{
    k <- if(int.pres) 1:length(coeff) else (nrp+1):length(coeff)
    if(is.matrix(adjto))
      dimnames(adjto) <- list(dimnames(adjto)[[1]],names(coeff)[k])
    else names(adjto) <- names(coeff)[k]
    return(adjto)
  }
}

if(length(xx) & type!="terms" & incl.non.slopes)	{
  X <- cbind(xx, X)
  dimnames(X) <- list(rnam, names(coeff))
  if((center.terms && type=="terms") | (cox & (se.fit | conf.int))) 
	adjto <- c(xx[1,], adjto)   #12Feb93
}

else if(somex) dimnames(X) <- 
  ##	list(rnam,names(coeff)[
  ##	 (nrp+1-(int.pres & incl.non.slopes)):length(coeff)])
  list(rnam,names(coeff)[(1+length(coeff)-ncol(X)):length(coeff)]) #22Jun95


storage.mode(X) <- "double"
if(type=="x") return(
     structure(naresid(naa,X), strata=if(nstrata>0) naresid(naa,strata) else NULL,
               offset=if(length(offs)) naresid(naa,offset) else NULL,
               na.action=if(expand.na)NULL else naa)
     )

if(type=="lp") {
  if(somex) {
    ## if( ) 28apr02
    if(elements.to.delete==9999) cof <- coeff else {
      cof <- coeff[-elements.to.delete]
      X <- X[,-elements.to.delete,drop=FALSE]
    }
	xb <- matxv(X, cof)+offset-Center
   	names(xb) <- rnam
   	if(!.R.) storage.mode(xb) <- "single"
  } else {if(!length(offs)) xb <- NULL else xb <- offset}
  xb <- naresid(naa, xb)
  if(nstrata>0)attr(xb,"strata") <- naresid(naa,strata)
  if((se.fit | conf.int) & somex) {
    if(cox) X <- sweep(X,2,adjto) #Center columns
    se <- drop(sqrt(((X %*% cov) * X) %*% rep(1, ncol(X))))
    names(se) <- rnam
    if(!.R.) storage.mode(se) <- "single"
    retlist <- structure(list(linear.predictors=xb, se.fit=naresid(naa,se)),
                         na.action=if(expand.na)NULL else naa)
    if(conf.int) {
      plminus <- zcrit*sqrt(retlist$se.fit^2 + vconstant)
      retlist$lower <- xb - plminus
      retlist$upper <- xb + plminus
    }
    return(retlist)
  }
  else return(structure(xb,na.action=if(expand.na)NULL else naa))
}

if(type=="terms") {
  if(!somex) stop('type="terms" may not be given unless covariables present')
  fitted <- array(0,c(nrow(X),sum(non.strat)),
                  list(rnam,name[non.strat]))
  if(se.fit) se <- fitted
  j <- 0
  if(center.terms) {
    ## 31jul02: lrm and perhaps others put out fit$x without column of
    ## intercepts but model has intercept
    if(ncol(adjto) != ncol(X)) {
      if(dimnames(adjto)[[2]][1] %in% c('Intercept','(Intercept)') &&
         dimnames(X)[[2]][1]    %nin% c('Intercept','(Intercept)'))
        adjto <- adjto[,-1,drop=FALSE]
      if(ncol(adjto) != ncol(X)) stop('program logic error')
    }
    X <- sweep(X, 2, adjto) # center columns
  }
  # PROBLEM: adjto = c(Intercept=1, sexmale=0); no 1s col in f$x
  num.intercepts.not.in.X <- length(coeff)-ncol(X)	#23Jan95
  for(i in (1:length(assume))[non.strat]) {
    j <- j+1
    k <- assign[[j+asso]]   #; m <- k+int.pres
    ko <- k - num.intercepts.not.in.X			#23Jun95
    fitted[,j] <- matxv(X[,ko,drop=FALSE], coeff[k])
    ## was X[,m], coeff[nrp+k]
    if(se.fit) se[,j] <- (((X[,ko,drop=FALSE] %*% cov[ko,ko,drop=FALSE]) * 
                           X[,ko,drop=FALSE]) %*% rep(1,length(ko)))^.5
  }
  if(!.R.) storage.mode(fitted) <- "single"
  fitted <- structure(naresid(naa,fitted), strata=if(nstrata==0) NULL else
                      naresid(naa, strata))
  if(se.fit) {
    if(!.R.) storage.mode(se) <- "single"
    return(structure(list(fitted=fitted, se.fit=naresid(naa,se)),
                     na.action=if(expand.na)NULL else naa)) 	}
  else return(structure(fitted, na.action=if(expand.na)NULL else naa))
}
}   
   
addOffset4ModelFrame <- function(Terms, newdata, offset=0) {
  offs <- attr(Terms,'offset')
  if(!length(offs)) return(newdata)
##  offsetVarname <- all.names(attr(Terms,'variables')[offs+1])[1] 12mar04
  offsetVarname <- setdiff(all.names(attr(Terms,'variables')[offs+1]),
                           'offset')
  if(length(offsetVarname) > 1) {
    warning(paste(c('More than one offset variable, only first used:',
                    offsetVarname),  collapse=' '))
    offsetVarname <- offsetVarname[1]
  }
##  offsetVarname <- offsetVarname[offsetVarname != 'offset']
  if(offsetVarname %nin% names(newdata)) {
    newdata[[offsetVarname]] <- rep(offset, length=nrow(newdata))
    warning(paste('offset variable set to',
                  paste(format(offset),collapse=' ')))
  }
  newdata
}