File: rm.impute.s

package info (click to toggle)
design 2.0.9-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,412 kB
  • ctags: 1,385
  • sloc: asm: 13,815; fortran: 626; sh: 28; makefile: 12
file content (222 lines) | stat: -rw-r--r-- 7,223 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Start with first visit containing any NAs
		
rm.impute <- function(pformula, y, last, rformula, fitter=ols,
					  which=c('last','mean','auc'),
					  data=sys.parent(1), n.impute=10, g=5, 
					  nk=0, rinteraction, rint.with=c('all','recent'),
					  pr=FALSE, pra=FALSE, npr=1, keep.prop=FALSE, keep.pfits=FALSE) {

rint.with <- match.arg(rint.with)
warning('This is an experimental procedure.  It should only be used for testing, as results are incorrect.')

d <- dim(y)
if(length(d) < 3) {
  y <- if(length(d) < 2) array(y, c(length(y),1,1),
							   list(names(y),NULL,NULL)) else
  array(y, c(d,1), list(dimnames(y)[[1]],dimnames(y)[[2]],NULL))
}
yat <- attributes(y)
d <- yat$dim
nr <- d[3]
nt <- d[2]
n  <- d[1]

if(length(last) != n) stop('length of last != nrow(y)')
which <- match.arg(which)
dimn  <- yat$dimnames
dimn[[4]] <- paste('Imputation',1:n.impute)
Y <- array(NA, c(n, nt, nr, n.impute), dimn)
Rvar <- dimn[[3]]
if(!length(Rvar)) Rvar <- if(nr==1) 'y' else paste('y',1:nr,sep='')

Propensity <- if(keep.prop) array(NA, c(n, nt, n.impute), dimn[c(1,2,4)])

pfits <- if(keep.pfits) vector('list',n.impute*nt)
if(!missing(rformula)) {
  fr    <- vector('list', nr)
  vavg <- bar <- cov <- vector('list',nr)
}

if(!missing(rinteraction) && length(rinteraction)>1)
  rinteraction <- paste('(',paste(rinteraction,collapse='+'),')',sep='')

kk <- 0
for(imp in 1:n.impute) {
  cat(if(pr | imp==1)'\n\nImputation',imp,if(pr)'\n-------------\n')

  form     <- update(pformula, in.period.i ~ ., evaluate=FALSE)  
  ## add/change response variable
  formbase <- form

  for(i in 1:nt) {
	kk <- kk + 1
	in.period.i <- last >= i
	if(imp==1) {
	  for(k in 1:nr) {
		w <- !is.na(y[,i,k]) != in.period.i
		if(any(w)) {
		  cat('Value of last disagrees with missingness of ',
			  Rvar[k],' in period ',i, ' for ', sum(w),
			  ' subjects\n\n', sep='')
		  print(table(ifelse(is.na(y[,i,k]),'Response NA','not NA'),
					  ifelse(in.period.i,'Subject in study','dropped out')))
		}
	  }
	}

	if(!.R.) storeTemp(in.period.i)
    # assign('in.period.i', in.period.i, frame=0) 17Apr01
	frm <- form
	if(i > 1) {
	  trvar <- rvar
	  if(nk > 0) trvar <- paste('rcs(',rvar,',',nk,')',sep='')
	  if(nr > 1) trvar <- paste('(',paste(trvar,collapse='+'),')',sep='')
	  if(!missing(rinteraction)) {
		trvar <- paste(trvar,'*',rinteraction)
		if(i > 2 && rint.with=='all') {
		  trvar <- paste(trvar,'+',rinteraction,'*',if(nr>1 | i>3)'(')
		  for(k in 1:nr) trvar <- paste(trvar, if(k>1) '+',
	   if(nk==0) paste(paste(Rvar[k],'.',1:(i-2),sep=''),collapse='+') else
				 paste(w1 <- paste('rcs(',Rvar[k],'.',1:(i-2),',',nk,')',sep=''),
					   collapse='+'))
		  if(nr>1 | i>3) trvar <- paste(trvar,')')
		  frm <- formbase
		}
	  }
	form <- update(frm, paste('~. +', trvar), evaluate=FALSE)
  }
	if(all(in.period.i)) {
	  if(imp==1) cat('\nTime period',i,': no dropouts\n')
	} else {
		prop.fit      <- lrm(form, data=data)
		if(prop.fit$fail) 
		  stop(paste('propensity model failed to converge for response',i,
					 'imputation',imp))
		if(keep.pfits) pfits[[kk]] <- prop.fit
		if(pr && imp <= npr) {
		  cat('\nTime period',i,'propensity model\n\n')
		  dput(form); cat('\n')
		  print(prop.fit)
		  if(pra) print(anova(prop.fit))
		}
		propensity    <- predict(prop.fit, type='fitted')
		propensity[propensity < 1e-10] <- 0 
		## only needed because bug in cut bombs cut2 below
		if(keep.prop) Propensity[,i,imp] <- propensity
		prop.quantile <- cut2(propensity, g=g)
		if(pr && imp <= npr) {
		  cat('\nFrequencies of propensity quantile groups by dropout status\n\n')
		  print(table(c('In study','Dropped out')[2-in.period.i], 
					  prop.quantile))
		}
		## Fill-in y values for current time corresponding to subjects
		## who dropped out before the current time, by sampling with
		## replacement from a sample with replacement (Rubin approx.
		## Bayes bootstrap) from non-dropout values within the same
		## propensity quantile
		for(pg in levels(prop.quantile)) {
		  s <- prop.quantile==pg
		  needed <- s & !in.period.i
		  avail  <- s & in.period.i
		  if(any(needed)) {
			if(!any(avail))
			  stop(paste(sum(needed),'imputations needed in propensity group',
						 k,'but no responses available; response',i,'imputation',
						 imp))
			indices <- sample(sample((1:n)[avail],sum(avail),rep=TRUE),
							  sum(needed),rep=TRUE)
			for(k in 1:nr) y[needed,i,k] <- y[indices,i,k]
		  }
		}
	  }
	rvar <- character(nr)
	for(k in 1:nr) {
	  rvar[k] <- paste(Rvar[k], '.', i, sep='')
	  #assign(rvar[k], y[,i,k,drop=TRUE], frame=0) 17Apr01
      storeTemp(y[,i,k,drop=TRUE], rvar[k])
	}
  }
  Y[,,,imp] <- y
  if(!missing(rformula)) {
	if(which=='auc') {
	  times <- as.numeric(dimnames(y)[[2]])
	  if(length(times)==0 | any(is.na(times)))
		stop('To use which="auc" y must have column names containing times')
	  mult <- double(nt)
	  for(j in 1:nt) mult[j] <- if(j==1) times[2]-times[1] else
	  if(j==nt) times[nt]-times[nt-1] else times[j+1]-times[j-1]
	}
	for(k in 1:nr) {
	  y. <- switch(which,
				   last = y[,nt,k,drop=TRUE],
				   mean = apply(y[,,k,drop=TRUE], 2, mean, na.rm=TRUE),
				   auc  = y[,,k,drop=TRUE] %*% mult/2)
	  
#	  assign(yy <- paste(Rvar[k],'.',sep=''), y., frame=0)  17Apr01
      yy <- paste(Rvar[k],'.',sep='')
      storeTemp(y., yy)
	  if(imp==1) rformula <- update(rformula, paste(yy,' ~ .'), evaluate=FALSE)
	  frk <- if(is.list(fitter)) fitter[[k]](rformula, data=data) else
	  fitter(rformula, data=data)
	  fr[[k]] <- frk
	  cof <- frk$coef
	  v <- Varcov(frk)
	  if(imp==1) {
		vavg[[k]] <- 0*v
		p <- length(frk$coef)
		bar[[k]] <- rep(0, p)
		vname <- names(frk$coef)
		cov[[k]] <- matrix(0, nrow=p, ncol=p, dimnames=list(vname,vname))
		if(!inherits(frk,'Design'))
		  warning('Not using a Design fitting function; summary(fit) will use\nstandard errors, t, P from last imputation only.  Use Varcov(fit) to get the\ncorrect covariance matrix, sqrt(diag(Varcov(fit))) to get s.e.\n\n')
	  }
	  vavg[[k]] <- vavg[[k]] + v
	  bar[[k]] <- bar[[k]] + cof
	  cof <- as.matrix(cof)
	  cov[[k]] <- cov[[k]] + cof %*% t(cof)
	}
  }
}

if(keep.prop) storage.mode(Propensity) <- 'single'
if(keep.pfits) {
  dim(pfits) <- c(nt, n.impute)
  dimnames(pfits) <- dimnames(Y)[c(2,4)]
}

if(!missing(rformula)) {
  for(k in 1:nr) {
	vavgk <- vavg[[k]] / n.impute
	bark  <- bar[[k]]/n.impute
	bark  <- as.matrix(bark)
	covk  <- (cov[[k]] - n.impute * bark %*% t(bark))/(n.impute-1)
	covk  <- vavgk + (n.impute+1)/n.impute * covk
	r <- diag(covk) / diag(vavgk)
	names(r) <- vname
	cat('\nVariance Inflation Factors Due to Imputation for ',Rvar[k],
		':\n\n')
	print(round(r,2))
	frk <- fr[[k]]
	frk$coefficients <- drop(bark)
	frk$var <- covk
	frk$variance.inflation.impute <- r
	oldClass(frk) <- c('fit.mult.impute',oldClass(fr[[k]]))
	fr[[k]] <- frk
  }
  list(fit=if(nr==1)fr[[1]] else fr, 
	   Y=drop(Y), propensity=Propensity, pfits=pfits)
} else list(Y=drop(Y), propensity=Propensity, pfits=pfits)
}

pbind <- function(...) {
  dotlist <- list(...)
  m1 <- as.matrix(dotlist[[1]])
  d <- dim(m1)
  nam <- names(dotlist)
  if(!length(nam)) nam <- as.character(sys.call())[-1]
  array(unlist(dotlist), c(d,length(dotlist)),
		list(dimnames(m1)[[1]], dimnames(m1)[[2]], nam))
}