1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
glmD <- if(.R.)
function(formula, family = gaussian, data = list(), weights = NULL,
subset = NULL, na.action = na.fail, start = NULL, offset = NULL,
control = glm.control(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
{
call <- match.call()
if (is.character(family))
family <- get(family)
if (is.function(family))
family <- family()
if (is.null(family$family)) {
print(family)
stop("`family' not recognized")
}
mt <- terms(formula, data = data)
if (missing(data))
data <- environment(formula)
mf <- match.call(expand.dots = FALSE)
mf$family <- mf$start <- mf$control <- mf$maxit <- NULL
mf$model <- mf$method <- mf$x <- mf$y <- mf$contrasts <- NULL
mf$... <- NULL
mf$drop.unused.levels <- TRUE # FEH 31jul02
mf[[1]] <- as.name("model.frame")
dul <- .Options$drop.unused.levels # FEH 31jul02
if(!length(dul) || dul) {
on.exit(options(drop.unused.levels=dul))
options(drop.unused.levels=FALSE)
}
mf <- Design(eval(mf, parent.frame())) # FEH 13Apr01
desatr <- attr(mf,'Design')
attr(mf,'Design') <- NULL
switch(method, model.frame = return(mf), glm.fit = 1, glm.fit.null = 1,
stop(paste("invalid `method':", method)))
xvars <- as.character(attr(mt, "variables"))[-1]
if ((yvar <- attr(mt, "response")) > 0)
xvars <- xvars[-yvar]
xlev <- if (length(xvars) > 0) {
xlev <- lapply(mf[xvars], levels)
xlev[!sapply(xlev, is.null)]
}
X <- if (!is.empty.model(mt))
model.matrix(mt, mf, contrasts)
Y <- model.response(mf, "numeric")
weights <- model.weights(mf)
offset <- model.offset(mf)
if (!is.null(weights) && any(weights < 0))
stop("Negative wts not allowed")
if (!is.null(offset) && length(offset) != NROW(Y))
stop(paste("Number of offsets is", length(offset), ", should equal",
NROW(Y), "(number of observations)"))
fit <- (if (is.empty.model(mt))
glm.fit.null
else glm.fit)(x = X, y = Y, weights = weights, start = start,
offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > 0)
if (any(offset) && attr(mt, "intercept") > 0) {
fit$null.deviance <- if (is.empty.model(mt))
fit$deviance
else glm.fit(x = X[, "(Intercept)", drop = FALSE], y = Y,
weights = weights, start = start, offset = offset,
family = family, control = control, intercept = TRUE)$deviance
}
if (model)
fit$model <- mf
if (x)
fit$x <- X
if (!y)
fit$y <- NULL
fit <- c(fit, list(call = call, formula = formula, terms = mt,
data = data, offset = offset, control = control, method = method,
contrasts = attr(X, "contrasts"), xlevels = xlev,
Design=desatr,
assign=DesignAssign(desatr,1,mt)))
##FEH 13Apr01 24nov02 above
class(fit) <- c("Design", 'glmD',
if (is.empty.model(mt)) "glm.null", "glm",
"lm") # FEH 13Apr01 glmD 26nov02
fit
} else function(formula = formula(data), family = gaussian,
data = sys.parent(),
weights, subset, na.action, start = eta, control = glm.control(...),
method = "glm.fit", model = FALSE, x = FALSE, y = TRUE, contrasts = NULL, ...)
{
call <- match.call()
m <- match.call(expand = FALSE)
m$family <- m$method <- m$model <- m$x <- m$y <- m$control <- m$
contrasts <- m$... <- NULL
m$drop.unused.levels <- TRUE
m[[1]] <- as.name("model.frame")
m <- Design(eval(m, sys.parent())) # FEH 13Apr01
desatr <- attr(m,'Design')
attr(m,'Design') <- NULL
Terms <- attr(m, "terms")
if(method == "model.frame")
return(m)
xvars <- as.character(attr(Terms, "variables"))
if(length(xvars) > 0) {
xlevels <- lapply(m[xvars], levels)
xlevels <- xlevels[!sapply(xlevels, is.null)]
if(length(xlevels) == 0)
xlevels <- NULL
}
else xlevels <- NULL
a <- attributes(m)
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
w <- model.extract(m, weights)
if(!length(w))
w <- rep(1, nrow(m))
else if(any(w < 0))
stop("negative weights not allowed")
start <- model.extract(m, start)
offset <- model.extract(m, offset)
family <- as.family(family)
if(missing(method))
method <- attr(family, "method")
if(!is.null(method)) {
if(!existsFunction(method))
stop(paste("unimplemented method:", method))
}
else method <- "glm.fit"
glm.fitter <- get(method)
fit <- glm.fitter(x = X, y = Y, w = w, start = start, offset = offset,
family = family, maxit = control$maxit, epsilon = control$
epsilon, trace = control$trace, null.dev = TRUE, ...)
#
# If an offset and intercept is present, iterations are needed to
# compute the Null deviance; these are done here, unless the model
# is NULL, in which case the computations have been done already
#
if(any(offset) && attr(Terms, "intercept")) {
null.deviance <- if(length(Terms)) glm.fitter(X[, "(Intercept)", drop = FALSE], Y, w, offset = offset, family =
family, maxit = control$maxit, epsilon =
control$epsilon, null.dev = NULL)$deviance
else fit$deviance
fit$null.deviance <- null.deviance
}
oldClass(fit) <- if(.SV4.) 'Design' else
c("Design","glmD","glm","lm") # FEH 13Apr01 16aug02
## glmD 2dec02 8p
if(!is.null(xlevels))
attr(fit, "xlevels") <- xlevels
fit$terms <- Terms
fit$formula <- as.vector(attr(Terms, "formula"))
fit$call <- call
fit$Design <- desatr # FEH 13Apr01
fit$assign <- DesignAssign(desatr,1,Terms) ## 24nov02
if(model)
fit$model <- m
if(x)
fit$x <- X
if(!y)
fit$y <- NULL
fit$control <- control
if(!is.null(attr(m, "na.action")))
fit$na.action <- attr(m, "na.action")
fit$fitFunction <- c('glmD','glm','lm') ## glmD 26nov02
fit
}
## 26nov02
print.glmD <- function(x, digits=4, ...) {
cat('General Linear Model\n\n')
dput(x$call); cat('\n\n')
cof <- coef(x)
lr <- x$null.deviance - x$deviance
names(cof) <- ifelse(names(cof)=='(Intercept)','Intercept',names(cof))
dof <- x$rank - (names(cof)[1]=='Intercept')
pval <- 1 - pchisq(lr, dof)
print(c('Model L.R.'=format(lr,digits=2), 'd.f.'=format(dof),
'P'=format(pval,digits=4)), quote=FALSE)
cat('\n')
se <- sqrt(diag(Varcov(x)))
z <- cof/se
p <- 1 - pchisq(z^2, 1)
w <- cbind(format(cof, digits=digits),
format(se, digits=digits),
format(z, digits=2),
format(p, digits=4))
dimnames(w) <- list(names(cof), c('Coef','S.E.','Wald Z','P'))
print(w, quote=FALSE)
invisible()
}
## 26nov02
summary.glmD <- function(...) summary.Design(...)
## 2dec02
Varcov.glmD <- function(object, regcoef.only=FALSE, ...)
Varcov.glm(object, regcoef.only, ...)
## 6dec02
predict.glmD <-
function(object, newdata,
type=c("lp","x","data.frame","terms","adjto","adjto.data.frame",
"model.frame"),
se.fit=FALSE, conf.int=FALSE, conf.type=c('mean','individual'),
incl.non.slopes, non.slopes, kint=1,
na.action=na.keep, expand.na=TRUE, center.terms=TRUE, ...)
predictDesign(object, newdata, type, se.fit, conf.int, conf.type,
incl.non.slopes, non.slopes, kint,
na.action, expand.na, center.terms, ...)
latex.glmD <- function(...) latexDesign(...)
|