File: mathPoly.h

package info (click to toggle)
dfcgen-gtk 0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,456 kB
  • sloc: ansic: 9,688; sh: 4,936; makefile: 207; sed: 16
file content (296 lines) | stat: -rw-r--r-- 11,473 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/**
 * \file        mathPoly.h
 * \brief       Polynomial functions.
 * \copyright   Copyright (C) 2006-2022 Ralf Hoppe <ralf.hoppe@dfcgen.de>
 */

#ifndef MATHPOLY_H
#define MATHPOLY_H


/* INCLUDE FILES **************************************************************/

#include "base.h"               /* includes config.h (include before math.h)  */

#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_poly.h>
#include <gsl/gsl_complex_math.h>



#ifdef  __cplusplus
extern "C" {
#endif


/* GLOBAL TYPE DECLARATIONS ***************************************************/

/** Polynomial representation.
 */
typedef struct
{
    int degree;                                     /**< Degree of polynomial */
    double *coeff;               /**< Pointer to real polynomial coefficients */
    gsl_complex *root; /**< Pointer to roots of polynomial (NULL if not evaluated) */
} MATHPOLY;



/* GLOBAL CONSTANT DECLARATIONS ***********************************************/


/* GLOBAL VARIABLE DECLARATIONS ***********************************************/


/* GLOBAL MACRO DEFINITIONS ***************************************************/


/* EXPORTED FUNCTIONS *********************************************************/


/* FUNCTION *******************************************************************/
/** Allocates memory space for the coefficients of a polynomial.
 *
 *  \param poly         Pointer to polynomial.
 *
 *  \return             Zero on success, else an error number.
 ******************************************************************************/
    int mathPolyMallocCoeffs (MATHPOLY *poly);


/* FUNCTION *******************************************************************/
/** Allocates memory space for the roots of a polynomial.
 *
 *  \param poly         Pointer to polynomial.
 *
 *  \return             Zero on success, else an error number.
 ******************************************************************************/
    int mathPolyMallocRoots (MATHPOLY *poly);


/* FUNCTION *******************************************************************/
/** Allocates memory space for a polynomial.
 *
 *  \param poly         Pointer to polynomial.
 *
 *  \return             0 on success, else an error number.
 ******************************************************************************/
    int mathPolyMalloc (MATHPOLY *poly);


/* FUNCTION *******************************************************************/
/** Frees memory space allocated for a polynomial.
 *
 *  \param poly         Pointer to polynomial.
 *
 ******************************************************************************/
    void mathPolyFree (MATHPOLY *poly);


/* FUNCTION *******************************************************************/
/** Calculates real polynomial coefficients from roots. The calculation of
 *  polynomial coefficients \f$c_i\f$ of
    \f[
    p(z)=c_n z^n + c_{n-1} z^{n-1}+ \cdots + c_2 z^2 + c_1 z + c_0
    \f]
    is performed using the following algorithm:
    \f[
    p_{i+1}(z)=p_{i}(z) (z-z_i)=z p_{i}(z)-z_i p_{i}(z)
    \f]
 *  with \f$p_{0}(z)=1\f$.
 *
 *  \param poly         Pointer to polynomial that holds the roots in \p
 *                      poly->root and gets the coefficients in \p poly->coeff.
 *  \param factor       Factor to be applied to all coefficients. To match a
 *                      roots representation to a polynomial polynomial the
 *                      coefficient \f$p_n\f$ must be multiplied as \p factor.
 *
 *  \return             GSL_SUCCESS on success, else an error number (see
 *                      gsl_errno.h for predefined codes).
 ******************************************************************************/
    int mathPolyRoots2Coeffs (MATHPOLY *poly, double factor);


/* FUNCTION *******************************************************************/
/** Computes the complex roots \f$z_i\f$ associated with the polynomial
    \f[
    p(z)=c_n z^n + c_{n-1} z^{n-1}+ \cdots + c_2 z^2 + c_1 z + c_0
    \f]
 *
 *  \param poly         Pointer to polynomial that holds the coefficients in
 *                      \p poly->coeff and gets the roots in \p poly->roots.
 *
 *  \return             Zero on success, else an error number (see errno.h or
 *                      gsl_errno.h for predefined codes).
 *  \todo               Try to avoid mixing error codes from gsl_errno.h
 *                      and errno.h
 ******************************************************************************/
    int mathPolyCoeffs2Roots (MATHPOLY *poly);



/* FUNCTION *******************************************************************/
/** Adds two polynomials with scaling.
 *
 *  \param poly1        Pointer to first polynomial and result. The coefficients
 *                      vector memory space must be large enough to get all
 *                      coefficients. The degree is increased (without malloc
 *                      of new memory), if \p poly2->degree is greater than
 *                      poly1->degree;
 *  \param poly2        Pointer to second polynomial.
 *  \param scale        Factor which is applied to each coefficient of \p poly2.
 *
 ******************************************************************************/
    void mathPolyAdd (MATHPOLY *poly1, const MATHPOLY *poly2, double scale);


/* FUNCTION *******************************************************************/
/** Multiplies a polynomial with the binomial \f$a z^n+b\f$.
 *  The function multiplies the polynomial
    \f{eqnarray*}
    p(z) &=& c_r z^r + c_{r-1} z^{r-1}+ \cdots + c_2 z^2 + c_1 z + c_0 \\
         &=& (\cdots(((c_r z + c_{r-1})z + c_{r-2})z + c_{r-3})z+\cdots+c_1)z+c_0
    \f}
 *  with \f$az^n+b\f$. The degree of new polynomial is \f$rn\f$, which must
 *  be available in \p poly.
    \f{eqnarray*}
    p(z) &=& (az^n + b)p(z) \\
         &=& a z^n p(z) + b p(z)
    \f}
 *
 *  \param poly         Pointer to polynomial which shalle be multiplied (in place).
 *  \param degn         Degree of polynomial \f$az^n+b\f$.
 *  \param a            Parameter \p a in polynomial \f$az^n+b\f$.
 *  \param b            Parameter \p b in polynomial \f$az^n+b\f$.
 *
 ******************************************************************************/
    void mathPolyMulBinomial (MATHPOLY *poly, int degn, double a, double b);


/* FUNCTION *******************************************************************/
/** Transforms polynomial coefficients for fractional variable substitution.
 *  The function transforms the polynomial
    \f{eqnarray*}
    p(z) &=& c_r z^r + c_{r-1} z^{r-1}+ \cdots + c_2 z^2 + c_1 z + c_0 \\
         &=& (\cdots(((c_r z + c_{r-1})z + c_{r-2})z + c_{r-3})z+\cdots+c_1)z+c_0
    \f}
 *  by replacing
    \f[
      z := \frac{\alpha z^m+\beta}{\gamma z^n+\delta}\qquad\alpha,\beta,\gamma,\delta\in R;\quad m,n\in N
    \f]
 *  into polynomial
    \f[
        p(z) := (\gamma z^n+\delta)^r p\left(\frac{\alpha z^m+\beta}{\gamma z^n+\delta}\right)
    \f]
 *  The new degree is \f$r\max(n,m)\f$.
 *  Set \f$p_i(z)=u_i(z)/v_i(z)\f$ the transformation algorithm is based
 *  on \e Horners scheme:
    \f{eqnarray*}
    p_{i}(z) &=& z\, p_{i-1}(z) + c_{r-i} \\
             &=& \frac{\alpha z^m+\beta}{\gamma z^n+\delta}\, p_{i-1}(z) + c_{r-i} \\
             &=& \frac{(\alpha z^m+\beta)\,p_{i-1}(z)+(\gamma z^n+\delta)\,c_{r-i}}{\gamma z^n+\delta} \\
    \frac{u_{i}(z)}{v_{i}(z)} &=& 
                 \frac{(\alpha z^m+\beta)\,\frac{u_{i-1}(z)}{v_{i-1}(z)}+(\gamma z^n+\delta)\,c_{r-i}}{\gamma z^n+\delta} \\
    v_{i}(z) &=& (\gamma z^n+\delta) v_{i-1}(z),\quad v_0=1 \\
    u_{i}(z) &=& (\alpha z^m+\beta)u_{i-1}(z)+c_{r-i}v_{i}(z),\quad u_0=c_r
    \f}
 *  with \f$i=1\ldots n\f$ and \f$p_{0}(z)=c_r\f$.
 *  So the following special transformation cases can be simply calculated:
 *  - linear (\f$n=0,\gamma=1,\delta=0,m=1\f$): \f$p(\alpha z+\beta)\f$
 *  - square (\f$n=0,\gamma=1,\delta=0,m=2\f$): \f$p(\alpha z^2+\beta)\f$
 *  - inverse (\f$n=1,\gamma=1,\delta=0,\alpha=0\f$): \f$z^r p(\beta/z)\f$
 *  - bilinear (\f$n=1,m=1,\alpha=1,\gamma=1,\beta=-1,\delta=1\f$): \f$(z+1)^r p\left(\frac{z-1}{z+1}\right)\f$
 *
 *  \param poly         Pointer to polynomial that coefficients \p poly->coeff
 *                      shall be transformed. The allocated memory space must
 *                      be enough to hold a polynomial of degree \f$r\max(n,m)\f$.
 *  \param degm         Numerator degree of transformation, means \f$m\f$.
 *  \param a            Transform parameter \f$\alpha\f$.
 *  \param b            Transform parameter \f$\beta\f$.
 *  \param degn         Denominator degree of transformation, means \f$n\f$.
 *  \param c            Transform parameter \f$\gamma\f$.
 *  \param d            Transform parameter \f$\delta\f$.
 *
 *  \return             Zero on success, else an error number (see errno.h or
 *                      gsl_errno.h for predefined codes).
 ******************************************************************************/
    int mathPolyTransform (MATHPOLY *poly,
                           int degm, double a, double b,
                           int degn, double c, double d);


/* FUNCTION *******************************************************************/
/** Calculates \e Bessel polynomial of n'th order in \p coeff.
    \f{eqnarray*}
        B_n &=& (2 n - 1) * B_{n-1} + s^2 B_{n-2} \\ 
        B_0 &=& 1 \\ 
        B_1 &=& 1+s
    \f}
 *
 *
 *  \param degree       Degree of polynomial.
 *  \param coeff        Array to be used to fill-in the calculated coefficients.
 *
 *  \return             0 on success, else an error number.
 ******************************************************************************/
    int mathPolyBessel (int degree, double coeff[]);


/* FUNCTION *******************************************************************/
/** \e Chebyshev function (polynomial) of first kind.
    \f{eqnarray*}
        y &=& \cos(n\arccos x)\quad(x\leq 1) \\
        y &=& \cosh(n\arcosh x)\quad(x>1)
    \f}
 *
 *  \param degree       Polynomial degree.
 *  \param x            Argument.
 *
 *  \return             \f$y \cos(n\arccos x)\f$.
 ******************************************************************************/
    double mathPolyCheby (int degree, double x);


/* FUNCTION *******************************************************************/
/** Inverse \e Chebyshev function (polynomial) of first kind.
    \f{eqnarray*}
        y &=& \cos(1/n \arccos x)\quad(x\leq 1) \\
        y &=& \cosh(1/n \arcosh x)\quad(x>1)
    \f}
 *
 *  \param degree       Polynomial degree.
 *  \param x            Argument.
 *
 *  \return             \f$y \cos(1/n \arccos x)\f$.
 ******************************************************************************/
    double mathPolyChebyInv (int degree, double x);



#ifdef DEBUG

/* FUNCTION *******************************************************************/
/** Logs polynomial coefficients for debug purposes.
 *
 *  \param poly         Pointer to polynomial that holds the coefficients.
 *
 ******************************************************************************/
    void mathPolyDebugLog (MATHPOLY *poly);


#endif /* DEBUG */



#ifdef  __cplusplus
}
#endif


#endif /* MATHPOLY_H */


/******************************************************************************/
/* END OF FILE                                                                */
/******************************************************************************/