1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// DGen v1.13+
// Megadrive's VDP C++ module
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "md.h"
int md_vdp::get_screen_info(struct dgen_sinfo *si)
{
// Release the pointers to vdp Data to an external function
si->vram=vram; si->cram=cram; si->vsram=vsram;
si->vdp_reg=reg;
// NB - if you change anything, remember to set 'dirt' accordingly
return 0;
}
int md_vdp::reset()
{
if (!ok) return 1;
rw_mode=0x00; rw_addr=0; rw_dma=0;
memset(mem,0,0x10100);
memset(reg,0,0x20);
memset(dirt,0xff,0x35); // mark everything as changed
return 0;
}
md_vdp::md_vdp()
{
ok=0;
belongs=0; // Don't know which megadrive vdp belongs to yet
mem=vram=cram=vsram=NULL;
mem=new unsigned char[0x10100+0x35]; //0x20+0x10+0x4+1 for dirt
if (mem==0) return;
vram=mem+0x00000; cram=mem+0x10000; vsram=mem+0x10080;
dirt=mem+0x10100; // VRAM/CRAM/Reg dirty buffer bitfield
// Also in 0x34 are global dirt flags (inclduing VSRAM this time)
highpal=new unsigned int[64]; if (highpal==0) return;
Bpp = Bpp_times8 = 0;
ok=1;
reset();
}
md_vdp::~md_vdp()
{
free(mem);
mem=vram=cram=vsram=NULL;
ok=0;
}
int md_vdp::dma_len()
{ return (reg[0x14]<<8)+reg[0x13]; }
int md_vdp::dma_addr()
{
int addr=0;
addr=(reg[0x17]&0x7f)<<17;
addr+=reg[0x16]<<9;
addr+=reg[0x15]<<1;
return addr;
}
// DMA can read from anywhere
unsigned char md_vdp::dma_mem_read(int addr)
{
return belongs->misc_readbyte(addr);
}
// Must go through these calls to update the dirty flags
int md_vdp::poke_vram(int addr,unsigned char d)
{
// Keeping GCC happy over unused vars. [PKH]
// int diff=0;
addr&=0xffff;
if (vram[addr]!=d)
{
// Store dirty information down to 256 byte level in bits
int byt,bit;
byt=addr>>8; bit=byt&7; byt>>=3; byt&=0x1f;
dirt[0x00+byt]|=(1<<bit); dirt[0x34]|=1;
vram[addr]=d;
}
return 0;
}
int md_vdp::poke_cram(int addr,unsigned char d)
{
// int diff=0;
addr&=0x007f;
if (cram[addr]!=d)
{
// Store dirty information down to 1byte level in bits
int byt,bit;
byt=addr; bit=byt&7; byt>>=3; byt&=0x0f;
dirt[0x20+byt]|=(1<<bit); dirt[0x34]|=2;
cram[addr]=d;
}
return 0;
}
int md_vdp::poke_vsram(int addr,unsigned char d)
{
// int diff=0;
addr&=0x007f;
if (vsram[addr]!=d)
{ dirt[0x34]|=4; vsram[addr]=d; }
return 0;
}
int md_vdp::putword(unsigned short d)
{
// int diff=0;
// Called by dma or a straight write
switch(rw_mode)
{
case 0x04: poke_vram (rw_addr+0,d>>8); poke_vram (rw_addr+1,d&0xff); break;
case 0x0c: poke_cram (rw_addr+0,d>>8); poke_cram (rw_addr+1,d&0xff); break;
case 0x14: poke_vsram(rw_addr+0,d>>8); poke_vsram(rw_addr+1,d&0xff); break;
}
rw_addr+=reg[15];
return 0;
}
int md_vdp::putbyte(unsigned char d)
{
// int diff=0;
// Called by dma or a straight write
switch(rw_mode)
{
case 0x04: poke_vram (rw_addr,d>>8); break;
case 0x0c: poke_cram (rw_addr,d>>8); break;
case 0x14: poke_vsram(rw_addr,d>>8); break;
}
rw_addr+=reg[15];
return 0;
}
#undef MAYCHANGE
unsigned short md_vdp::readword()
{
// Called by a straight read only
unsigned short result=0x0000;
switch(rw_mode)
{
case 0x00: result=( vram[(rw_addr+0)&0xffff]<<8)+
vram[(rw_addr+1)&0xffff]; break;
case 0x20: result=( cram[(rw_addr+0)&0x007f]<<8)+
cram[(rw_addr+1)&0x007f]; break;
case 0x10: result=(vsram[(rw_addr+0)&0x007f]<<8)+
vsram[(rw_addr+1)&0x007f]; break;
}
rw_addr+=reg[15];
return result;
}
unsigned char md_vdp::readbyte()
{
// Called by a straight read only
unsigned char result=0x00;
switch(rw_mode)
{
case 0x00: result= vram[(rw_addr+0)&0xffff]; break;
case 0x20: result= cram[(rw_addr+0)&0x007f]; break;
case 0x10: result=vsram[(rw_addr+0)&0x007f]; break;
}
rw_addr+=reg[15];
return result;
}
int md_vdp::command(unsigned int cmd)
{
// Decode 32-bit VDP command
rw_dma=((cmd&0x80)==0x80);
rw_mode= cmd&0x00000070;
rw_mode|=(cmd&0xc0000000)>>28;
// mode writes: 04=VRAM 0C=CRAM 14=VSRAM
// mode reads: 00=VRAM 20=CRAM 10=VSRAM
rw_addr= (cmd&0x00000003)<<14;
rw_addr|=(cmd&0x3fff0000)>>16;
// If not dma (or we need a fill),
// we are set up to write any data sent to vdp data reg
// if it's a dma request do it straight away
if (rw_dma)
{
int mode=(reg[0x17]>>6)&3;
int s=0,d=0,i=0,len=0;
s=dma_addr(); d=rw_addr; len=dma_len();
switch (mode)
{
case 0: case 1:
for (i=0;i<len;i++)
{
unsigned short val;
val= dma_mem_read(s++); val<<=8;
val|=dma_mem_read(s++); putword(val);
}
break;
case 2:
// Done later on
break;
case 3:
for (i=0;i<len;i++)
{
unsigned short val;
val= vram[(s++)&0xffff]; val<<=8;
val|=vram[(s++)&0xffff]; putword(val);
}
break;
}
}
return 0;
}
int md_vdp::writeword(unsigned short d)
{
if (rw_dma)
{
// This is the 'done later on' bit for words
// Do a dma fill if it's set up:
if (((reg[0x17]>>6)&3)==2)
{
int i,len;
len=dma_len();
for (i=0;i<len;i++)
putword(d);
return 0;
}
}
else
{
putword(d);
return 0;
}
return 0;
}
int md_vdp::writebyte(unsigned char d)
{
if (rw_dma)
{
// This is the 'done later on' bit for bytes
// Do a dma fill if it's set up:
if (((reg[0x17]>>6)&3)==2)
{
int i,len;
len=dma_len();
for (i=0;i<len;i++)
putbyte(d);
return 0;
}
}
else
{
putbyte(d);
return 0;
}
return 0;
}
|