1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "renderer/tr_local.h"
int c_turboUsedVerts;
int c_turboUnusedVerts;
/*
=====================
R_CreateVertexProgramTurboShadowVolume
are dangling edges that are outside the light frustum still making planes?
=====================
*/
srfTriangles_t *R_CreateVertexProgramTurboShadowVolume( const idRenderEntityLocal *ent,
const srfTriangles_t *tri, const idRenderLightLocal *light,
srfCullInfo_t &cullInfo ) {
int i, j;
srfTriangles_t *newTri;
silEdge_t *sil;
const glIndex_t *indexes;
const byte *facing;
R_CalcInteractionFacing( ent, tri, light, cullInfo );
if ( r_useShadowProjectedCull.GetBool() ) {
R_CalcInteractionCullBits( ent, tri, light, cullInfo );
}
int numFaces = tri->numIndexes / 3;
int numShadowingFaces = 0;
facing = cullInfo.facing;
// if all the triangles are inside the light frustum
if ( cullInfo.cullBits == LIGHT_CULL_ALL_FRONT || !r_useShadowProjectedCull.GetBool() ) {
// count the number of shadowing faces
for ( i = 0; i < numFaces; i++ ) {
numShadowingFaces += facing[i];
}
numShadowingFaces = numFaces - numShadowingFaces;
} else {
// make all triangles that are outside the light frustum "facing", so they won't cast shadows
indexes = tri->indexes;
byte *modifyFacing = cullInfo.facing;
const byte *cullBits = cullInfo.cullBits;
for ( j = i = 0; i < tri->numIndexes; i += 3, j++ ) {
if ( !modifyFacing[j] ) {
int i1 = indexes[i+0];
int i2 = indexes[i+1];
int i3 = indexes[i+2];
if ( cullBits[i1] & cullBits[i2] & cullBits[i3] ) {
modifyFacing[j] = 1;
} else {
numShadowingFaces++;
}
}
}
}
if ( !numShadowingFaces ) {
// no faces are inside the light frustum and still facing the right way
return NULL;
}
// shadowVerts will be NULL on these surfaces, so the shadowVerts will be taken from the ambient surface
newTri = R_AllocStaticTriSurf();
newTri->numVerts = tri->numVerts * 2;
// alloc the max possible size
#ifdef USE_TRI_DATA_ALLOCATOR
R_AllocStaticTriSurfIndexes( newTri, ( numShadowingFaces + tri->numSilEdges ) * 6 );
glIndex_t *tempIndexes = newTri->indexes;
glIndex_t *shadowIndexes = newTri->indexes;
#else
glIndex_t *tempIndexes = (glIndex_t *)_alloca16( tri->numSilEdges * 6 * sizeof( tempIndexes[0] ) );
glIndex_t *shadowIndexes = tempIndexes;
#endif
// create new triangles along sil planes
for ( sil = tri->silEdges, i = tri->numSilEdges; i > 0; i--, sil++ ) {
int f1 = facing[sil->p1];
int f2 = facing[sil->p2];
if ( !( f1 ^ f2 ) ) {
continue;
}
int v1 = sil->v1 << 1;
int v2 = sil->v2 << 1;
// set the two triangle winding orders based on facing
// without using a poorly-predictable branch
shadowIndexes[0] = v1;
shadowIndexes[1] = v2 ^ f1;
shadowIndexes[2] = v2 ^ f2;
shadowIndexes[3] = v1 ^ f2;
shadowIndexes[4] = v1 ^ f1;
shadowIndexes[5] = v2 ^ 1;
shadowIndexes += 6;
}
int numShadowIndexes = shadowIndexes - tempIndexes;
// we aren't bothering to separate front and back caps on these
newTri->numIndexes = newTri->numShadowIndexesNoFrontCaps = numShadowIndexes + numShadowingFaces * 6;
newTri->numShadowIndexesNoCaps = numShadowIndexes;
newTri->shadowCapPlaneBits = SHADOW_CAP_INFINITE;
#ifdef USE_TRI_DATA_ALLOCATOR
// decrease the size of the memory block to only store the used indexes
R_ResizeStaticTriSurfIndexes( newTri, newTri->numIndexes );
#else
// allocate memory for the indexes
R_AllocStaticTriSurfIndexes( newTri, newTri->numIndexes );
// copy the indexes we created for the sil planes
SIMDProcessor->Memcpy( newTri->indexes, tempIndexes, numShadowIndexes * sizeof( tempIndexes[0] ) );
#endif
// these have no effect, because they extend to infinity
newTri->bounds.Clear();
// put some faces on the model and some on the distant projection
indexes = tri->indexes;
shadowIndexes = newTri->indexes + numShadowIndexes;
for ( i = 0, j = 0; i < tri->numIndexes; i += 3, j++ ) {
if ( facing[j] ) {
continue;
}
int i0 = indexes[i+0] << 1;
shadowIndexes[2] = i0;
shadowIndexes[3] = i0 ^ 1;
int i1 = indexes[i+1] << 1;
shadowIndexes[1] = i1;
shadowIndexes[4] = i1 ^ 1;
int i2 = indexes[i+2] << 1;
shadowIndexes[0] = i2;
shadowIndexes[5] = i2 ^ 1;
shadowIndexes += 6;
}
return newTri;
}
/*
=====================
R_CreateTurboShadowVolume
=====================
*/
srfTriangles_t *R_CreateTurboShadowVolume( const idRenderEntityLocal *ent,
const srfTriangles_t *tri, const idRenderLightLocal *light,
srfCullInfo_t &cullInfo ) {
int i, j;
idVec3 localLightOrigin;
srfTriangles_t *newTri;
silEdge_t *sil;
const glIndex_t *indexes;
const byte *facing;
R_CalcInteractionFacing( ent, tri, light, cullInfo );
if ( r_useShadowProjectedCull.GetBool() ) {
R_CalcInteractionCullBits( ent, tri, light, cullInfo );
}
int numFaces = tri->numIndexes / 3;
int numShadowingFaces = 0;
facing = cullInfo.facing;
// if all the triangles are inside the light frustum
if ( cullInfo.cullBits == LIGHT_CULL_ALL_FRONT || !r_useShadowProjectedCull.GetBool() ) {
// count the number of shadowing faces
for ( i = 0; i < numFaces; i++ ) {
numShadowingFaces += facing[i];
}
numShadowingFaces = numFaces - numShadowingFaces;
} else {
// make all triangles that are outside the light frustum "facing", so they won't cast shadows
indexes = tri->indexes;
byte *modifyFacing = cullInfo.facing;
const byte *cullBits = cullInfo.cullBits;
for ( j = i = 0; i < tri->numIndexes; i += 3, j++ ) {
if ( !modifyFacing[j] ) {
int i1 = indexes[i+0];
int i2 = indexes[i+1];
int i3 = indexes[i+2];
if ( cullBits[i1] & cullBits[i2] & cullBits[i3] ) {
modifyFacing[j] = 1;
} else {
numShadowingFaces++;
}
}
}
}
if ( !numShadowingFaces ) {
// no faces are inside the light frustum and still facing the right way
return NULL;
}
newTri = R_AllocStaticTriSurf();
#ifdef USE_TRI_DATA_ALLOCATOR
R_AllocStaticTriSurfShadowVerts( newTri, tri->numVerts * 2 );
shadowCache_t *shadowVerts = newTri->shadowVertexes;
#else
shadowCache_t *shadowVerts = (shadowCache_t *)_alloca16( tri->numVerts * 2 * sizeof( shadowVerts[0] ) );
#endif
R_GlobalPointToLocal( ent->modelMatrix, light->globalLightOrigin, localLightOrigin );
int *vertRemap = (int *)_alloca16( tri->numVerts * sizeof( vertRemap[0] ) );
SIMDProcessor->Memset( vertRemap, -1, tri->numVerts * sizeof( vertRemap[0] ) );
for ( i = 0, j = 0; i < tri->numIndexes; i += 3, j++ ) {
if ( facing[j] ) {
continue;
}
// this may pull in some vertexes that are outside
// the frustum, because they connect to vertexes inside
vertRemap[tri->silIndexes[i+0]] = 0;
vertRemap[tri->silIndexes[i+1]] = 0;
vertRemap[tri->silIndexes[i+2]] = 0;
}
newTri->numVerts = SIMDProcessor->CreateShadowCache( &shadowVerts->xyz, vertRemap, localLightOrigin, tri->verts, tri->numVerts );
c_turboUsedVerts += newTri->numVerts;
c_turboUnusedVerts += tri->numVerts * 2 - newTri->numVerts;
#ifdef USE_TRI_DATA_ALLOCATOR
R_ResizeStaticTriSurfShadowVerts( newTri, newTri->numVerts );
#else
R_AllocStaticTriSurfShadowVerts( newTri, newTri->numVerts );
SIMDProcessor->Memcpy( newTri->shadowVertexes, shadowVerts, newTri->numVerts * sizeof( shadowVerts[0] ) );
#endif
// alloc the max possible size
#ifdef USE_TRI_DATA_ALLOCATOR
R_AllocStaticTriSurfIndexes( newTri, ( numShadowingFaces + tri->numSilEdges ) * 6 );
glIndex_t *tempIndexes = newTri->indexes;
glIndex_t *shadowIndexes = newTri->indexes;
#else
glIndex_t *tempIndexes = (glIndex_t *)_alloca16( tri->numSilEdges * 6 * sizeof( tempIndexes[0] ) );
glIndex_t *shadowIndexes = tempIndexes;
#endif
// create new triangles along sil planes
for ( sil = tri->silEdges, i = tri->numSilEdges; i > 0; i--, sil++ ) {
int f1 = facing[sil->p1];
int f2 = facing[sil->p2];
if ( !( f1 ^ f2 ) ) {
continue;
}
int v1 = vertRemap[sil->v1];
int v2 = vertRemap[sil->v2];
// set the two triangle winding orders based on facing
// without using a poorly-predictable branch
shadowIndexes[0] = v1;
shadowIndexes[1] = v2 ^ f1;
shadowIndexes[2] = v2 ^ f2;
shadowIndexes[3] = v1 ^ f2;
shadowIndexes[4] = v1 ^ f1;
shadowIndexes[5] = v2 ^ 1;
shadowIndexes += 6;
}
int numShadowIndexes = shadowIndexes - tempIndexes;
// we aren't bothering to separate front and back caps on these
newTri->numIndexes = newTri->numShadowIndexesNoFrontCaps = numShadowIndexes + numShadowingFaces * 6;
newTri->numShadowIndexesNoCaps = numShadowIndexes;
newTri->shadowCapPlaneBits = SHADOW_CAP_INFINITE;
#ifdef USE_TRI_DATA_ALLOCATOR
// decrease the size of the memory block to only store the used indexes
R_ResizeStaticTriSurfIndexes( newTri, newTri->numIndexes );
#else
// allocate memory for the indexes
R_AllocStaticTriSurfIndexes( newTri, newTri->numIndexes );
// copy the indexes we created for the sil planes
SIMDProcessor->Memcpy( newTri->indexes, tempIndexes, numShadowIndexes * sizeof( tempIndexes[0] ) );
#endif
// these have no effect, because they extend to infinity
newTri->bounds.Clear();
// put some faces on the model and some on the distant projection
indexes = tri->silIndexes;
shadowIndexes = newTri->indexes + numShadowIndexes;
for ( i = 0, j = 0; i < tri->numIndexes; i += 3, j++ ) {
if ( facing[j] ) {
continue;
}
int i0 = vertRemap[indexes[i+0]];
shadowIndexes[2] = i0;
shadowIndexes[3] = i0 ^ 1;
int i1 = vertRemap[indexes[i+1]];
shadowIndexes[1] = i1;
shadowIndexes[4] = i1 ^ 1;
int i2 = vertRemap[indexes[i+2]];
shadowIndexes[0] = i2;
shadowIndexes[5] = i2 ^ 1;
shadowIndexes += 6;
}
return newTri;
}
|