1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
|
/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "tools/edit_gui_common.h"
#include "qe3.h"
#define ZERO_EPSILON 1.0E-6
class idVec3D {
public:
double x, y, z;
double & operator[]( const int index ) {
return (&x)[index];
}
void Zero() {
x = y = z = 0.0;
}
};
//
// =======================================================================================================================
// compute a determinant using Sarrus rule ++timo "inline" this with a macro NOTE:: the three idVec3D are understood as
// columns of the matrix
// =======================================================================================================================
//
double SarrusDet(idVec3D a, idVec3D b, idVec3D c) {
return (double)a[0] * (double)b[1] * (double)c[2] + (double)b[0] * (double)c[1] * (double)a[2] + (double)c[0] * (double)a[1] * (double)b[2] - (double)c[0] * (double)b[1] * (double)a[2] - (double)a[1] * (double)b[0] * (double)c[2] - (double)a[0] * (double)b[2] * (double)c[1];
}
//
// =======================================================================================================================
// ++timo replace everywhere texX by texS etc. ( > and in q3map !) NOTE:: ComputeAxisBase here and in q3map code must
// always BE THE SAME ! WARNING:: special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere
// when x == 0 rotation by (0,RotY,RotZ) assigns X to normal
// =======================================================================================================================
//
void ComputeAxisBase(idVec3 &normal, idVec3D &texS, idVec3D &texT) {
double RotY, RotZ;
// do some cleaning
if (idMath::Fabs(normal[0]) < 1e-6) {
normal[0] = 0.0f;
}
if (idMath::Fabs(normal[1]) < 1e-6) {
normal[1] = 0.0f;
}
if (idMath::Fabs(normal[2]) < 1e-6) {
normal[2] = 0.0f;
}
RotY = -atan2(normal[2], idMath::Sqrt(normal[1] * normal[1] + normal[0] * normal[0]));
RotZ = atan2(normal[1], normal[0]);
// rotate (0,1,0) and (0,0,1) to compute texS and texT
texS[0] = -sin(RotZ);
texS[1] = cos(RotZ);
texS[2] = 0;
// the texT vector is along -Z ( T texture coorinates axis )
texT[0] = -sin(RotY) * cos(RotZ);
texT[1] = -sin(RotY) * sin(RotZ);
texT[2] = -cos(RotY);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void FaceToBrushPrimitFace(face_t *f) {
idVec3D texX, texY;
idVec3D proj;
// ST of (0,0) (1,0) (0,1)
idVec5 ST[3]; // [ point index ] [ xyz ST ]
//
// ++timo not used as long as brushprimit_texdef and texdef are static
// f->brushprimit_texdef.contents=f->texdef.contents;
// f->brushprimit_texdef.flags=f->texdef.flags;
// f->brushprimit_texdef.value=f->texdef.value;
// strcpy(f->brushprimit_texdef.name,f->texdef.name);
//
#ifdef _DEBUG
if (f->plane[0] == 0.0f && f->plane[1] == 0.0f && f->plane[2] == 0.0f) {
common->Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n");
}
// check d_texture
if (!f->d_texture) {
common->Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n");
return;
}
#endif
// compute axis base
ComputeAxisBase(f->plane.Normal(), texX, texY);
// compute projection vector
VectorCopy( f->plane, proj );
VectorScale(proj, -f->plane[3], proj);
//
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the
// affine plane (1,0) in plane axis base is texX in world coordinates + projection
// on the affine plane (0,1) in plane axis base is texY in world coordinates +
// projection on the affine plane use old texture code to compute the ST coords of
// these points
//
VectorCopy(proj, ST[0]);
EmitTextureCoordinates(ST[0], f->d_texture, f);
VectorCopy(texX, ST[1]);
VectorAdd(ST[1], proj, ST[1]);
EmitTextureCoordinates(ST[1], f->d_texture, f);
VectorCopy(texY, ST[2]);
VectorAdd(ST[2], proj, ST[2]);
EmitTextureCoordinates(ST[2], f->d_texture, f);
// compute texture matrix
f->brushprimit_texdef.coords[0][2] = ST[0][3];
f->brushprimit_texdef.coords[1][2] = ST[0][4];
f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2];
f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2];
}
//
// =======================================================================================================================
// compute texture coordinates for the winding points
// =======================================================================================================================
//
void EmitBrushPrimitTextureCoordinates(face_t *f, idWinding *w, patchMesh_t *patch) {
idVec3D texX, texY;
double x, y;
if (f== NULL || (w == NULL && patch == NULL)) {
return;
}
// compute axis base
ComputeAxisBase(f->plane.Normal(), texX, texY);
//
// in case the texcoords matrix is empty, build a default one same behaviour as if
// scale[0]==0 && scale[1]==0 in old code
//
if ( f->brushprimit_texdef.coords[0][0] == 0 &&
f->brushprimit_texdef.coords[1][0] == 0 &&
f->brushprimit_texdef.coords[0][1] == 0 &&
f->brushprimit_texdef.coords[1][1] == 0 ) {
f->brushprimit_texdef.coords[0][0] = 1.0f;
f->brushprimit_texdef.coords[1][1] = 1.0f;
ConvertTexMatWithQTexture(&f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture);
}
int i;
if (w) {
for (i = 0; i < w->GetNumPoints(); i++) {
x = DotProduct((*w)[i], texX);
y = DotProduct((*w)[i], texY);
(*w)[i][3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
(*w)[i][4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
}
}
if (patch) {
int j;
for ( i = 0; i < patch->width; i++ ) {
for ( j = 0; j < patch->height; j++ ) {
x = DotProduct(patch->ctrl(i, j).xyz, texX);
y = DotProduct(patch->ctrl(i, j).xyz, texY);
patch->ctrl(i, j).st.x = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
patch->ctrl(i, j).st.y = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
}
}
}
}
//
// =======================================================================================================================
// parse a brush in brush primitive format
// =======================================================================================================================
//
void BrushPrimit_Parse(brush_t *b, bool newFormat, const idVec3 origin) {
face_t *f;
int i, j;
GetToken(true);
if (strcmp(token, "{")) {
Warning("parsing brush primitive");
return;
}
do {
if (!GetToken(true)) {
break;
}
if (!strcmp(token, "}")) {
break;
}
// reading of b->epairs if any
if (strcmp(token, "(")) {
ParseEpair(&b->epairs);
}
else { // it's a face
f = Face_Alloc();
f->next = NULL;
if (!b->brush_faces) {
b->brush_faces = f;
}
else {
face_t *scan;
for (scan = b->brush_faces; scan->next; scan = scan->next)
;
scan->next = f;
}
if (newFormat) {
// read the three point plane definition
idPlane plane;
for (j = 0; j < 4; j++) {
GetToken(false);
plane[j] = atof(token);
}
f->plane = plane;
f->originalPlane = plane;
f->dirty = false;
//idWinding *w = Brush_MakeFaceWinding(b, f, true);
idWinding w;
w.BaseForPlane( plane );
for (j = 0; j < 3; j++) {
f->planepts[j].x = w[j].x + origin.x;
f->planepts[j].y = w[j].y + origin.y;
f->planepts[j].z = w[j].z + origin.z;
}
GetToken(false);
}
else {
for (i = 0; i < 3; i++) {
if (i != 0) {
GetToken(true);
}
if (strcmp(token, "(")) {
Warning("parsing brush");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->planepts[i][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush");
return;
}
}
}
// texture coordinates
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->brushprimit_texdef.coords[0][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->brushprimit_texdef.coords[1][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
// read the texturedef
GetToken(false);
// strcpy(f->texdef.name, token);
if (g_qeglobals.mapVersion < 2.0) {
f->texdef.SetName(va("textures/%s", token));
}
else {
f->texdef.SetName(token);
}
if (TokenAvailable()) {
GetToken(false);
GetToken(false);
GetToken(false);
f->texdef.value = atoi(token);
}
}
} while (1);
}
//
// =======================================================================================================================
// compute a fake shift scale rot representation from the texture matrix these shift scale rot values are to be
// understood in the local axis base
// =======================================================================================================================
//
void TexMatToFakeTexCoords(float texMat[2][3], float shift[2], float *rot, float scale[2])
{
#ifdef _DEBUG
// check this matrix is orthogonal
if (idMath::Fabs(texMat[0][0] * texMat[0][1] + texMat[1][0] * texMat[1][1]) > ZERO_EPSILON) {
common->Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n");
}
#endif
scale[0] = idMath::Sqrt(texMat[0][0] * texMat[0][0] + texMat[1][0] * texMat[1][0]);
scale[1] = idMath::Sqrt(texMat[0][1] * texMat[0][1] + texMat[1][1] * texMat[1][1]);
#ifdef _DEBUG
if (scale[0] < ZERO_EPSILON || scale[1] < ZERO_EPSILON) {
common->Printf("Warning : unexpected scale==0 in TexMatToFakeTexCoords\n");
}
#endif
// compute rotate value
if (idMath::Fabs(texMat[0][0]) < ZERO_EPSILON)
{
#ifdef _DEBUG
// check brushprimit_texdef[1][0] is not zero
if (idMath::Fabs(texMat[1][0]) < ZERO_EPSILON) {
common->Printf("Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n");
}
#endif
// rotate is +-90
if (texMat[1][0] > 0) {
*rot = 90.0f;
}
else {
*rot = -90.0f;
}
}
else {
*rot = RAD2DEG(atan2(texMat[1][0], texMat[0][0]));
}
shift[0] = -texMat[0][2];
shift[1] = texMat[1][2];
}
//
// =======================================================================================================================
// compute back the texture matrix from fake shift scale rot the matrix returned must be understood as a qtexture_t
// with width=2 height=2 ( the default one )
// =======================================================================================================================
//
void FakeTexCoordsToTexMat(float shift[2], float rot, float scale[2], float texMat[2][3]) {
texMat[0][0] = scale[0] * cos(DEG2RAD(rot));
texMat[1][0] = scale[0] * sin(DEG2RAD(rot));
texMat[0][1] = -1.0f * scale[1] * sin(DEG2RAD(rot));
texMat[1][1] = scale[1] * cos(DEG2RAD(rot));
texMat[0][2] = -shift[0];
texMat[1][2] = shift[1];
}
//
// =======================================================================================================================
// convert a texture matrix between two qtexture_t if NULL for qtexture_t, basic 2x2 texture is assumed ( straight
// mapping between s/t coordinates and geometric coordinates )
// =======================================================================================================================
//
void ConvertTexMatWithQTexture(float texMat1[2][3], const idMaterial *qtex1, float texMat2[2][3], const idMaterial *qtex2, float sScale = 1.0, float tScale = 1.0) {
float s1, s2;
s1 = (qtex1 ? static_cast<float>(qtex1->GetEditorImage()->uploadWidth) : 2.0f) / (qtex2 ? static_cast<float>(qtex2->GetEditorImage()->uploadWidth) : 2.0f);
s2 = (qtex1 ? static_cast<float>(qtex1->GetEditorImage()->uploadHeight) : 2.0f) / (qtex2 ? static_cast<float>(qtex2->GetEditorImage()->uploadHeight) : 2.0f);
s1 *= sScale;
s2 *= tScale;
texMat2[0][0] = s1 * texMat1[0][0];
texMat2[0][1] = s1 * texMat1[0][1];
texMat2[0][2] = s1 * texMat1[0][2];
texMat2[1][0] = s2 * texMat1[1][0];
texMat2[1][1] = s2 * texMat1[1][1];
texMat2[1][2] = s2 * texMat1[1][2];
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void ConvertTexMatWithQTexture(brushprimit_texdef_t *texMat1, const idMaterial *qtex1, brushprimit_texdef_t *texMat2, const idMaterial *qtex2, float sScale, float tScale) {
ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2, sScale, tScale);
}
//
// =======================================================================================================================
// texture locking
// =======================================================================================================================
//
void Face_MoveTexture_BrushPrimit(face_t *f, idVec3 delta) {
idVec3D texS, texT;
double tx, ty;
idVec3D M[3]; // columns of the matrix .. easier that way
double det;
idVec3D D[2];
// compute plane axis base ( doesn't change with translation )
ComputeAxisBase(f->plane.Normal(), texS, texT);
// compute translation vector in plane axis base
tx = DotProduct(delta, texS);
ty = DotProduct(delta, texT);
// fill the data vectors
M[0][0] = tx;
M[0][1] = 1.0f + tx;
M[0][2] = tx;
M[1][0] = ty;
M[1][1] = ty;
M[1][2] = 1.0f + ty;
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet(M[0], M[1], M[2]);
f->brushprimit_texdef.coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// call Face_MoveTexture_BrushPrimit after idVec3D computation
// =======================================================================================================================
//
void Select_ShiftTexture_BrushPrimit(face_t *f, float x, float y, bool autoAdjust) {
#if 0
idVec3D texS, texT;
idVec3D delta;
ComputeAxisBase(f->plane.normal, texS, texT);
VectorScale(texS, x, texS);
VectorScale(texT, y, texT);
VectorCopy(texS, delta);
VectorAdd(delta, texT, delta);
Face_MoveTexture_BrushPrimit(f, delta);
#else
if (autoAdjust) {
x /= f->d_texture->GetEditorImage()->uploadWidth;
y /= f->d_texture->GetEditorImage()->uploadHeight;
}
f->brushprimit_texdef.coords[0][2] += x;
f->brushprimit_texdef.coords[1][2] += y;
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
#endif
}
//
// =======================================================================================================================
// best fitted 2D vector is x.X+y.Y
// =======================================================================================================================
//
void ComputeBest2DVector(idVec3 v, idVec3 X, idVec3 Y, int &x, int &y) {
double sx, sy;
sx = DotProduct(v, X);
sy = DotProduct(v, Y);
if (idMath::Fabs(sy) > idMath::Fabs(sx)) {
x = 0;
if (sy > 0.0) {
y = 1;
}
else {
y = -1;
}
}
else {
y = 0;
if (sx > 0.0) {
x = 1;
}
else {
x = -1;
}
}
}
//
// =======================================================================================================================
// in many case we know three points A,B,C in two axis base B1 and B2 and we want the matrix M so that A(B1) = T *
// A(B2) NOTE: 2D homogeneous space stuff NOTE: we don't do any check to see if there's a solution or we have a
// particular case .. need to make sure before calling NOTE: the third coord of the A,B,C point is ignored NOTE: see
// the commented out section to fill M and D ++timo TODO: update the other members to use this when possible
// =======================================================================================================================
//
void MatrixForPoints(idVec3D M[3], idVec3D D[2], brushprimit_texdef_t *T) {
//
// idVec3D M[3]; // columns of the matrix .. easier that way (the indexing is not
// standard! it's column-line .. later computations are easier that way)
//
double det;
// idVec3D D[2];
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
#if 0
// fill the data vectors
M[0][0] = A2[0];
M[0][1] = B2[0];
M[0][2] = C2[0];
M[1][0] = A2[1];
M[1][1] = B2[1];
M[1][2] = C2[1];
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
D[0][0] = A1[0];
D[0][1] = B1[0];
D[0][2] = C1[0];
D[1][0] = A1[1];
D[1][1] = B1[1];
D[1][2] = C1[1];
#endif
// solve
det = SarrusDet(M[0], M[1], M[2]);
T->coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
T->coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
T->coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
T->coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
T->coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
T->coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// ++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) can be improved .. bug #107311
// mins and maxs are the face bounding box ++timo fixme: we use the face info, mins and maxs are irrelevant
// =======================================================================================================================
//
void Face_FitTexture_BrushPrimit(face_t *f, idVec3 mins, idVec3 maxs, float height, float width) {
idVec3D BBoxSTMin, BBoxSTMax;
idWinding *w;
int i, j;
double val;
idVec3D M[3], D[2];
// idVec3D N[2],Mf[2];
brushprimit_texdef_t N;
idVec3D Mf[2];
//memset(f->brushprimit_texdef.coords, 0, sizeof(f->brushprimit_texdef.coords));
//f->brushprimit_texdef.coords[0][0] = 1.0f;
//f->brushprimit_texdef.coords[1][1] = 1.0f;
//ConvertTexMatWithQTexture(&f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture);
//
// we'll be working on a standardized texture size ConvertTexMatWithQTexture(
// &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); compute
// the BBox in ST coords
//
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
BBoxSTMin[0] = BBoxSTMin[1] = BBoxSTMin[2] = 999999;
BBoxSTMax[0] = BBoxSTMax[1] = BBoxSTMax[2] = -999999;
w = f->face_winding;
if (w) {
for (i = 0; i < w->GetNumPoints(); i++) {
// AddPointToBounds in 2D on (S,T) coordinates
for (j = 0; j < 2; j++) {
val = (*w)[i][j + 3];
if (val < BBoxSTMin[j]) {
BBoxSTMin[j] = val;
}
if (val > BBoxSTMax[j]) {
BBoxSTMax[j] = val;
}
}
}
}
//
// we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1])
// (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space the BP
// matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in
// (Sfit,Tfit) space to these three points we have A(Sfit,Tfit) = (0,0) = Mf *
// A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) so we solve the system for N
// and then Mf = N * M
//
M[0][0] = BBoxSTMin[0];
M[0][1] = BBoxSTMax[0];
M[0][2] = BBoxSTMin[0];
M[1][0] = BBoxSTMin[1];
M[1][1] = BBoxSTMin[1];
M[1][2] = BBoxSTMax[1];
D[0][0] = 0.0f;
D[0][1] = width;
D[0][2] = 0.0f;
D[1][0] = 0.0f;
D[1][1] = 0.0f;
D[1][2] = height;
MatrixForPoints(M, D, &N);
#if 0
//
// FIT operation gives coordinates of three points of the bounding box in (S',T'),
// our target axis base A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight)
// and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1])
// B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) we
// compute the N transformation so that: A(S',T') = N * A(S,T)
//
N[0][0] = (BBoxSTMax[0] - BBoxSTMin[0]) / width;
N[0][1] = 0.0f;
N[0][2] = BBoxSTMin[0];
N[1][0] = 0.0f;
N[1][1] = (BBoxSTMax[1] - BBoxSTMin[1]) / height;
N[1][2] = BBoxSTMin[1];
#endif
// the final matrix is the product (Mf stands for Mfit)
Mf[0][0] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][0] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][0];
Mf[0][1] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][1] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][1];
Mf[0][2] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][2] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][2] +
N.coords[0][2];
Mf[1][0] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][0] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][0];
Mf[1][1] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][1] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][1];
Mf[1][2] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][2] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][2] +
N.coords[1][2];
// copy back
VectorCopy(Mf[0], f->brushprimit_texdef.coords[0]);
VectorCopy(Mf[1], f->brushprimit_texdef.coords[1]);
//
// handle the texture size ConvertTexMatWithQTexture( &f->brushprimit_texdef,
// NULL, &f->brushprimit_texdef, f->d_texture );
//
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_ScaleTexture_BrushPrimit(face_t *face, float sS, float sT) {
if (!g_qeglobals.m_bBrushPrimitMode) {
Sys_Status("BP mode required\n");
return;
}
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
BPMatScale(pBP->coords, sS, sT);
// now emit the coordinates on the winding
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_RotateTexture_BrushPrimit(face_t *face, float amount, idVec3 origin) {
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
if (amount) {
float x = pBP->coords[0][0];
float y = pBP->coords[0][1];
float x1 = pBP->coords[1][0];
float y1 = pBP->coords[1][1];
float s = sin( DEG2RAD( amount ) );
float c = cos( DEG2RAD( amount ) );
pBP->coords[0][0] = (((x - origin[0]) * c) - ((y - origin[1]) * s)) + origin[0];
pBP->coords[0][1] = (((x - origin[0]) * s) + ((y - origin[1]) * c)) + origin[1];
pBP->coords[1][0] = (((x1 - origin[0]) * c) - ((y1 - origin[1]) * s)) + origin[0];
pBP->coords[1][1] = (((x1 - origin[0]) * s) + ((y1 - origin[1]) * c)) + origin[1];
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
}
//
// TEXTURE LOCKING (Relevant to the editor only?)
// internally used for texture locking on rotation and flipping the general
// algorithm is the same for both lockings, it's only the geometric transformation
// part that changes so I wanted to keep it in a single function if there are more
// linear transformations that need the locking, going to a C++ or code pointer
// solution would be best (but right now I want to keep brush_primit.cpp striclty
// C)
//
bool txlock_bRotation;
// rotation locking params
int txl_nAxis;
double txl_fDeg;
idVec3D txl_vOrigin;
// flip locking params
idVec3D txl_matrix[3];
idVec3D txl_origin;
/*
=======================================================================================================================
=======================================================================================================================
*/
void TextureLockTransformation_BrushPrimit(face_t *f) {
idVec3D Orig, texS, texT; // axis base of initial plane
// used by transformation algo
idVec3D temp;
int j;
//idVec3D vRotate; // rotation vector
idVec3D rOrig, rvecS, rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
idVec3 rNormal;
idVec3D rtexS, rtexT; // axis base for the transformed plane
idVec3D lOrig, lvecS, lvecT; // [2] are not used ( but usefull for debugging )
idVec3D M[3];
double det;
idVec3D D[2];
// silence compiler warnings
rOrig.Zero();
rvecS = rOrig;
rvecT = rOrig;
rNormal.x = rOrig.x;
rNormal.y = rOrig.y;
rNormal.z = rOrig.z;
// compute plane axis base
ComputeAxisBase(f->plane.Normal(), texS, texT);
Orig.x = vec3_origin.x;
Orig.y = vec3_origin.y;
Orig.z = vec3_origin.z;
//
// compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base
// ) after transformation (0,0) (1,0) (0,1) ( expressed in initial plane axis base
// ) <-> (0,0,0) texS texT ( expressed world axis base ) input: Orig, texS, texT
// (and the global locking params) ouput: rOrig, rvecS, rvecT, rNormal
//
if (txlock_bRotation) {
/*
// rotation vector
vRotate.x = vec3_origin.x;
vRotate.y = vec3_origin.y;
vRotate.z = vec3_origin.z;
vRotate[txl_nAxis] = txl_fDeg;
VectorRotate3Origin(Orig, vRotate, txl_vOrigin, rOrig);
VectorRotate3Origin(texS, vRotate, txl_vOrigin, rvecS);
VectorRotate3Origin(texT, vRotate, txl_vOrigin, rvecT);
// compute normal of plane after rotation
VectorRotate3(f->plane.Normal(), vRotate, rNormal);
*/
}
else {
VectorSubtract(Orig, txl_origin, temp);
for (j = 0; j < 3; j++) {
rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
VectorSubtract(texS, txl_origin, temp);
for (j = 0; j < 3; j++) {
rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
VectorSubtract(texT, txl_origin, temp);
for (j = 0; j < 3; j++) {
rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
//
// we also need the axis base of the target plane, apply the transformation matrix
// to the normal too..
//
for (j = 0; j < 3; j++) {
rNormal[j] = DotProduct(f->plane, txl_matrix[j]);
}
}
// compute rotated plane axis base
ComputeAxisBase(rNormal, rtexS, rtexT);
// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
lOrig[0] = DotProduct(rOrig, rtexS);
lOrig[1] = DotProduct(rOrig, rtexT);
lvecS[0] = DotProduct(rvecS, rtexS);
lvecS[1] = DotProduct(rvecS, rtexT);
lvecT[0] = DotProduct(rvecT, rtexS);
lvecT[1] = DotProduct(rvecT, rtexT);
M[0][0] = lOrig[0];
M[1][0] = lOrig[1];
M[2][0] = 1.0f;
M[0][1] = lvecS[0];
M[1][1] = lvecS[1];
M[2][1] = 1.0f;
M[0][2] = lvecT[0];
M[1][2] = lvecT[1];
M[2][2] = 1.0f;
// fill data vector
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet(M[0], M[1], M[2]);
f->brushprimit_texdef.coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// texture locking called before the points on the face are actually rotated
// =======================================================================================================================
//
void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, idVec3 vOrigin) {
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = true;
txl_nAxis = nAxis;
txl_fDeg = fDeg;
VectorCopy(vOrigin, txl_vOrigin);
TextureLockTransformation_BrushPrimit(f);
}
//
// =======================================================================================================================
// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane o
// rientation) this matches the select_matrix algo used in select.cpp this needs to be called on the face BEFORE any
// geometric transformation it will compute the texture matrix that will represent the same texture on the face after
// the geometric transformation is done
// =======================================================================================================================
//
void ApplyMatrix_BrushPrimit(face_t *f, idMat3 matrix, idVec3 origin) {
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = false;
VectorCopy(matrix[0], txl_matrix[0]);
VectorCopy(matrix[1], txl_matrix[1]);
VectorCopy(matrix[2], txl_matrix[2]);
VectorCopy(origin, txl_origin);
TextureLockTransformation_BrushPrimit(f);
}
//
// =======================================================================================================================
// don't do C==A!
// =======================================================================================================================
//
void BPMatMul(float A[2][3], float B[2][3], float C[2][3]) {
C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0];
C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0];
C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1];
C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1];
C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2];
C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2];
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void BPMatDump(float A[2][3]) {
common->Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void BPMatRotate(float A[2][3], float theta) {
float m[2][3];
float aux[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = cos( DEG2RAD( theta ) );
m[0][1] = -sin( DEG2RAD( theta ) );
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
BPMatMul(A, m, aux);
BPMatCopy(aux, A);
}
void Face_GetScale_BrushPrimit(face_t *face, float *s, float *t, float *rot) {
idVec3D texS, texT;
ComputeAxisBase(face->plane.Normal(), texS, texT);
if (face == NULL || face->face_winding == NULL) {
return;
}
// find ST coordinates for the center of the face
double Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
Os += DotProduct((*face->face_winding)[i], texS);
Ot += DotProduct((*face->face_winding)[i], texT);
}
Os /= face->face_winding->GetNumPoints();
Ot /= face->face_winding->GetNumPoints();
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
// here we have a special case, M is a translation and it's inverse is easy
float BPO[2][3];
float aux[2][3];
float m[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = 1;
m[1][1] = 1;
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(m, pBP->coords, aux);
m[0][2] = Os;
m[1][2] = Ot; // now M^-1
BPMatMul(aux, m, BPO);
// apply a given scale (on S and T)
ConvertTexMatWithQTexture(BPO, face->d_texture, aux, NULL);
*s = idMath::Sqrt(aux[0][0] * aux[0][0] + aux[1][0] * aux[1][0]);
*t = idMath::Sqrt(aux[0][1] * aux[0][1] + aux[1][1] * aux[1][1]);
// compute rotate value
if (idMath::Fabs(face->brushprimit_texdef.coords[0][0]) < ZERO_EPSILON)
{
// rotate is +-90
if (face->brushprimit_texdef.coords[1][0] > 0) {
*rot = 90.0f;
}
else {
*rot = -90.0f;
}
}
else {
*rot = RAD2DEG(atan2(face->brushprimit_texdef.coords[1][0] / (*s) ? (*s) : 1.0f, face->brushprimit_texdef.coords[0][0] / (*t) ? (*t) : 1.0f));
}
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_SetExplicitScale_BrushPrimit(face_t *face, float s, float t) {
idVec3D texS, texT;
ComputeAxisBase(face->plane.Normal(), texS, texT);
// find ST coordinates for the center of the face
double Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
Os += DotProduct((*face->face_winding)[i], texS);
Ot += DotProduct((*face->face_winding)[i], texT);
}
Os /= face->face_winding->GetNumPoints();
Ot /= face->face_winding->GetNumPoints();
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
// here we have a special case, M is a translation and it's inverse is easy
float BPO[2][3];
float aux[2][3];
float m[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = 1;
m[1][1] = 1;
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(m, pBP->coords, aux);
m[0][2] = Os;
m[1][2] = Ot; // now M^-1
BPMatMul(aux, m, BPO);
// apply a given scale (on S and T)
ConvertTexMatWithQTexture(BPO, face->d_texture, aux, NULL);
// reset the scale (normalize the matrix)
double v1, v2;
v1 = idMath::Sqrt(aux[0][0] * aux[0][0] + aux[1][0] * aux[1][0]);
v2 = idMath::Sqrt(aux[0][1] * aux[0][1] + aux[1][1] * aux[1][1]);
if (s == 0.0) {
s = v1;
}
if (t == 0.0) {
t = v2;
}
double sS, sT;
// put the values for scale on S and T here:
sS = s / v1;
sT = t / v2;
aux[0][0] *= sS;
aux[1][0] *= sS;
aux[0][1] *= sT;
aux[1][1] *= sT;
ConvertTexMatWithQTexture(aux, NULL, BPO, face->d_texture);
BPMatMul(m, BPO, aux); // m is M^-1
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(aux, m, pBP->coords);
// now emit the coordinates on the winding
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
void Face_FlipTexture_BrushPrimit(face_t *f, bool y) {
float s, t, rot;
Face_GetScale_BrushPrimit(f, &s, &t, &rot);
if (y) {
Face_SetExplicitScale_BrushPrimit(f, 0.0, -t);
} else {
Face_SetExplicitScale_BrushPrimit(f, -s, 0.0);
}
#if 0
idVec3D texS, texT;
ComputeAxisBase(f->plane.normal, texS, texT);
double Os = 0, Ot = 0;
for (int i = 0; i < f->face_winding->numpoints; i++) {
Os += DotProduct(f->face_winding->p[i], texS);
Ot += DotProduct(f->face_winding->p[i], texT);
}
Ot = abs(Ot);
Ot *= t;
Ot /= f->d_texture->GetEditorImage()->uploadHeight;
Os = abs(Os);
Os *= s;
Os /= f->d_texture->GetEditorImage()->uploadWidth;
if (y) {
Face_FitTexture_BrushPrimit(f, texS, texT, -Ot, 1.0);
} else {
Face_FitTexture_BrushPrimit(f, texS, texT, 1.0, -Os);
}
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
#endif
}
void Brush_FlipTexture_BrushPrimit(brush_t *b, bool y) {
for (face_t *f = b->brush_faces; f; f = f->next) {
Face_FlipTexture_BrushPrimit(f, y);
}
}
void Face_SetAxialScale_BrushPrimit(face_t *face, bool y) {
if (!face) {
return;
}
if (!face->face_winding) {
return;
}
//float oldS, oldT, oldR;
//Face_GetScale_BrushPrimit(face, &oldS, &oldT, &oldR);
idVec3D min, max;
min.x = min.y = min.z = 999999.0;
max.x = max.y = max.z = -999999.0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
for (int j = 0; j < 3; j++) {
if ((*face->face_winding)[i][j] < min[j]) {
min[j] = (*face->face_winding)[i][j];
}
if ((*face->face_winding)[i][j] > max[j]) {
max[j] = (*face->face_winding)[i][j];
}
}
}
idVec3 len;
if (g_bAxialMode) {
if (g_axialAnchor >= 0 && g_axialAnchor < face->face_winding->GetNumPoints() &&
g_axialDest >= 0 && g_axialDest < face->face_winding->GetNumPoints() &&
g_axialAnchor != g_axialDest) {
len = (*face->face_winding)[g_axialDest].ToVec3() - (*face->face_winding)[g_axialAnchor].ToVec3();
} else {
return;
}
} else {
if (y) {
len = (*face->face_winding)[2].ToVec3() - (*face->face_winding)[1].ToVec3();
} else {
len = (*face->face_winding)[1].ToVec3() - (*face->face_winding)[0].ToVec3();
}
}
double dist = len.Length();
double width = idMath::Fabs(max.x - min.x);
double height = idMath::Fabs(max.z - min.z);
//len = maxs[2] - mins[2];
//double yDist = len.Length();
if (dist != 0.0) {
if (dist > face->d_texture->GetEditorImage()->uploadHeight) {
height = 1.0 / (dist / face->d_texture->GetEditorImage()->uploadHeight);
} else {
height /= dist;
}
if (dist > face->d_texture->GetEditorImage()->uploadWidth) {
width = 1.0 / (dist / face->d_texture->GetEditorImage()->uploadWidth);
} else {
width /= dist;
}
}
if (y) {
Face_SetExplicitScale_BrushPrimit(face, 0.0, height);
//oldT = oldT / height * 10;
//Select_ShiftTexture_BrushPrimit(face, 0, -oldT, true);
} else {
Face_SetExplicitScale_BrushPrimit(face, width, 0.0);
}
/*
common->Printf("Face x: %f y: %f xr: %f yr: %f\n", x, y, xRatio, yRatio);
common->Printf("Texture x: %i y: %i \n",face->d_texture->GetEditorImage()->uploadWidth, face->d_texture->GetEditorImage()->uploadHeight);
idVec3D texS, texT;
ComputeAxisBase(face->plane.normal, texS, texT);
float Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->numpoints; i++) {
Os += DotProduct(face->face_winding->p[i], texS);
Ot += DotProduct(face->face_winding->p[i], texT);
}
common->Printf("Face2 x: %f y: %f \n", Os, Ot);
Os /= face->face_winding->numpoints;
Ot /= face->face_winding->numpoints;
//Os /= face->face_winding->numpoints;
//Ot /= face->face_winding->numpoints;
*/
}
|