File: boundingbox.c

package info (click to toggle)
dia 0.97.3%2Bgit20160930-9
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 54,372 kB
  • sloc: ansic: 155,065; xml: 16,326; python: 6,641; cpp: 4,935; makefile: 3,833; sh: 540; perl: 137; sed: 19
file content (565 lines) | stat: -rw-r--r-- 17,684 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/* Dia -- an diagram creation/manipulation program
 * Support for computing bounding boxes 
 * Copyright (C) 2001 Cyrille Chepelov
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <config.h>

#define _BSD_SOURCE 1
#include <math.h>
#include <string.h> /* memcmp() */

#include <glib.h>

#include "geometry.h"
#include "boundingbox.h"

/** Translates x- or y- part of bezier points to Bernstein polynom coefficients
 * @param p x- or y-part of the four points
 * @param A 
 * @param B 
 * @param C 
 * @param D 
 * See: Foley et al., Computer Graphics, Bezier Curves or
 * http://en.wikipedia.org/wiki/B%C3%A9zier_curve
 */
void
bernstein_develop(const real p[4], real *A, real *B, real *C, real *D)
{
  *A =   -p[0]+3*p[1]-3*p[2]+p[3];
  *B =  3*p[0]-6*p[1]+3*p[2];
  *C = -3*p[0]+3*p[1];
  *D =    p[0];
  /* if Q(u)=Sum(i=0..3)piBi(u) (Bi(u) being the Bernstein stuff),
     then Q(u)=Au^3+Bu^2+Cu+p[0]. */
}

/** Evaluates the Bernstein polynoms for a given position
 * @param p x- or y-values of four points describing the bezier
 * @param u position on the curve [0 .. 1]
 * @returns the evaluate x- or y-part of the point
 */
real
bezier_eval(const real p[4], real u)
{
  real A,B,C,D;
  bernstein_develop(p,&A,&B,&C,&D);
  return A*u*u*u+B*u*u+C*u+D;
}

/** Calculates the tangent for a given point on a bezier curve
 * @param p x- or y-values of four points describing the bezier
 * @param u position on the curve between[0 .. 1]
 * @return the x- or y-part of the tangent vector
 */
real
bezier_eval_tangent(const real p[4], real u)
{
  real A,B,C,D;
  bernstein_develop(p,&A,&B,&C,&D);
  return 3*A*u*u+2*B*u+C;
}  

/**
 * Calculates the extrma of the given curve in x- or y-direction.
 * @param p x- or y-values of four points describing the bezier
 * @param u The position of the extrema [0 .. 1]
 * @return The number of extrema found.
 */
static int
bicubicbezier_extrema(const real p[4],real u[2])
{
  real A,B,C,D,delta;

  bernstein_develop(p,&A,&B,&C,&D);
  delta = 4*B*B - 12*A*C;

  u[0] = u[1] = 0.0;
  if (delta<0) return 0;

  /* just a quadratic contribution? */
  if (fabs(A) < 1e-6) {
    u[0] = -C/(2*B);
    return 1;
  }

  u[0] = (-2*B + sqrt(delta)) / (6*A);
  if (delta==0) return 1;
  u[1] = (-2*B - sqrt(delta)) / (6*A);
  return 2;
}

/** Add to a bounding box the area covered by a standard arrow.
 * @param rect The bounding box to adjust
 * @param vertex The end point of the arrow.
 * @param normed_dir The normalized direction of the arrow (i.e. 1 cm in the
 * direction the arrow points from.
 * @param extra_long ???
 * @param extra_trans ???
 */
static void
add_arrow_rectangle(Rectangle *rect,
                    const Point *vertex,
                    const Point *normed_dir,
                    real extra_long,real extra_trans)
{
  Point vl,vt,pt;
  vl = *normed_dir;

  point_get_perp(&vt,&vl);
  point_copy_add_scaled(&pt,vertex,&vl,extra_long);
  point_add_scaled(&pt,&vt,extra_trans);
  rectangle_add_point(rect,&pt);
  point_add_scaled(&pt,&vt,-2.0 * extra_trans);
  rectangle_add_point(rect,&pt);
  point_add_scaled(&pt,&vl,-2.0 * extra_long);
  rectangle_add_point(rect,&pt);
  point_add_scaled(&pt,&vt,2.0 * extra_trans);
  rectangle_add_point(rect,&pt);  
}

/** Calculate the boundingbox for a 2D bezier curve segment.
 * @param p0 start point
 * @param p1 1st control point
 * @param p2 2nd control point
 * @param p3 end point
 * @param extra information about extra space from linewidth and arrow to add to the bounding box
 * @param rect The rectangle that the segment fits inside.
 */
void
bicubicbezier2D_bbox(const Point *p0,const Point *p1,
                     const Point *p2,const Point *p3,
                     const PolyBBExtras *extra,
                     Rectangle *rect)
{
  real x[4],y[4];
  Point vl,vt,p,tt;
  real *xy;
  int i,extr;
  real u[2];

  rect->left = rect->right = p0->x;
  rect->top = rect->bottom = p0->y;

  rectangle_add_point(rect,p3);
  /* start point */  
  point_copy_add_scaled(&vl,p0,p1,-1);
  if (point_len(&vl) == 0)
    point_copy_add_scaled(&vl,p0,p2,-1);
  point_normalize(&vl); 
  add_arrow_rectangle(rect,p0,&vl,extra->start_long,MAX(extra->start_trans,
                                                         extra->middle_trans));

  /* end point */
  point_copy_add_scaled(&vl,p3,p2,-1);
  if (point_len(&vl) == 0)
    point_copy_add_scaled(&vl,p3,p1,-1);
  point_normalize(&vl); 
  add_arrow_rectangle(rect,p3,&vl,extra->end_long,MAX(extra->end_trans,
                                                      extra->middle_trans));

  /* middle part */  
  x[0] = p0->x; x[1] = p1->x; x[2] = p2->x; x[3] = p3->x;
  y[0] = p0->y; y[1] = p1->y; y[2] = p2->y; y[3] = p3->y;

  for (xy = x; xy ; xy=(xy==x?y:NULL) ) { /* sorry */
    extr = bicubicbezier_extrema(xy,u);
    for (i=0;i<extr;i++) {
      if ((u[i]<0) || (u[i]>1)) continue;
      p.x = bezier_eval(x,u[i]);
      vl.x = bezier_eval_tangent(x,u[i]);
      p.y = bezier_eval(y,u[i]);
      vl.y = bezier_eval_tangent(y,u[i]);
      point_normalize(&vl);
      point_get_perp(&vt,&vl);

      point_copy_add_scaled(&tt,&p,&vt,extra->middle_trans);
      rectangle_add_point(rect,&tt);
      point_copy_add_scaled(&tt,&p,&vt,-extra->middle_trans);
      rectangle_add_point(rect,&tt);
    }
  }
}

/** Calculate the bounding box for a simple line.
 * @param p1 One end of the line.
 * @param p2 The other end of the line.
 * @param extra Extra information 
 * @param rect The box that the line and extra stuff fits inside.
 */
void
line_bbox(const Point *p1, const Point *p2,
          const LineBBExtras *extra,
          Rectangle *rect)
{
  Point vl;
  
  rect->left = rect->right = p1->x;
  rect->top = rect->bottom = p1->y;

  rectangle_add_point(rect,p2); /* as a safety, so we don't need to care if it above or below p1 */
  
  point_copy_add_scaled(&vl,p1,p2,-1);
  point_normalize(&vl);
  add_arrow_rectangle(rect,p1,&vl,extra->start_long,extra->start_trans);
  point_scale(&vl,-1);
  add_arrow_rectangle(rect,p2,&vl,extra->end_long,extra->end_trans);
}

/** Calculate the bounding box of an ellipse.
 * @param centre The center point of the ellipse.
 * @param width The width of the ellipse.
 * @param height The height of the ellipse.
 * @param extra Extra information required.
 * @param rect The bounding box that the ellipse fits inside.
 */
void
ellipse_bbox(const Point *centre, real width, real height,
             const ElementBBExtras *extra,
             Rectangle *rect)
{
  Rectangle rin;
  rin.left = centre->x - width/2;
  rin.right = centre->x + width/2;
  rin.top = centre->y - height/2;
  rin.bottom = centre->y + height/2;

  rectangle_bbox(&rin,extra,rect);
}

/**  Allocate some scratch space to hold a big enough Bezier. 
 * That space is not guaranteed to be preserved upon the next allocation
 * (in fact it's guaranteed it's not).
 * @param numpoints How many points of bezier to allocate space for.
 * @returns Newly allocated array of points.
 */
static BezPoint *
alloc_polybezier_space(int numpoints)
{
  static int alloc_np = 0; 
  static BezPoint *alloced = NULL;
  
  if (alloc_np < numpoints) {
    g_free(alloced);
    alloc_np = numpoints;
    alloced = g_new0(BezPoint,numpoints);
  }
  return alloced;
}

/** Free the scratch space allocated above.
 * @param points Previously allocated list of points.
 * @note Doesn't actually free it, as alloc_polybezier_space does that.
 */
static void
free_polybezier_space(BezPoint *points)
{ /* dummy */ }

/** Calculate the boundingbox for a polyline.
 * @param pts Array of points.
 * @param numpoints Number of elements in `pts'.
 * @param extra Extra space information
 * @param closed Whether the polyline is closed or not.
 * @param rect Return value: The bounding box that includes the points and
 * extra spacing.
 */
void
polyline_bbox(const Point *pts, int numpoints, 
              const PolyBBExtras *extra, gboolean closed,
              Rectangle *rect)
{
  /* It's much easier to re-use the Bezier code... */
  int i;
  BezPoint *bpts = alloc_polybezier_space(numpoints + 1);

  bpts[0].type = BEZ_MOVE_TO;
  bpts[0].p1 = pts[0];

  for (i=1;i<numpoints;i++) {
    bpts[i].type = BEZ_LINE_TO;
    bpts[i].p1 = pts[i];
  }
  /* This one will be used only when closed==TRUE... */
  bpts[numpoints].type = BEZ_LINE_TO;
  bpts[numpoints].p1 = pts[0];
  
  polybezier_bbox(bpts,numpoints + (closed?1:0),extra,closed,rect);
  free_polybezier_space(bpts);
}

/** Calculate a bounding box for a set of bezier points.
 * @param pts The bezier points
 * @param numpoints The number of elements in `pts'
 * @param extra Extra spacing information.
 * @param closed True if the bezier points form a closed line.
 * @param rect Return value: The enclosing rectangle will be stored here.
 */
void 
polybezier_bbox(const BezPoint *pts, int numpoints,
                const PolyBBExtras *extra, gboolean closed,            
                Rectangle *rect)
{
  Point vx,vn,vsc,vp;
  int i,prev,next;
  Rectangle rt;
  PolyBBExtras bextra,start_bextra,end_bextra,full_bextra;
  LineBBExtras lextra,start_lextra,end_lextra,full_lextra;
  gboolean start,end;

  vp.x=0;
  vp.y=0;

  g_assert(pts[0].type == BEZ_MOVE_TO);

  rect->left = rect->right = pts[0].p1.x;
  rect->top = rect->bottom = pts[0].p1.y;

  /* First, we build derived BBExtras structures, so we have something to feed 
     the primitives. */ 
  if (!closed) {
    start_lextra.start_long = extra->start_long;
    start_lextra.start_trans = MAX(extra->start_trans,extra->middle_trans);
    start_lextra.end_long = 0;
    start_lextra.end_trans = extra->middle_trans;

    end_lextra.start_long = 0;
    end_lextra.start_trans = extra->middle_trans;
    end_lextra.end_long = extra->end_long;
    end_lextra.end_trans = MAX(extra->end_trans,extra->middle_trans);
  }

  full_lextra.start_long = extra->start_long;
  full_lextra.start_trans = MAX(extra->start_trans,extra->middle_trans);
  full_lextra.end_long = extra->end_long;
  full_lextra.end_trans = MAX(extra->end_trans,extra->middle_trans);
  full_bextra.start_long = extra->start_long;
  full_bextra.start_trans = MAX(extra->start_trans,extra->middle_trans);
  full_bextra.middle_trans = extra->middle_trans;
  full_bextra.end_long = extra->end_long;
  full_bextra.end_trans = MAX(extra->end_trans,extra->middle_trans);

  if (!closed) {
    lextra.start_long = 0;
    lextra.start_trans = extra->middle_trans;
    lextra.end_long = 0;
    lextra.end_trans = extra->middle_trans;

    start_bextra.start_long = extra->start_long;
    start_bextra.start_trans = extra->start_trans;
    start_bextra.middle_trans = extra->middle_trans;
    start_bextra.end_long = 0;
    start_bextra.end_trans = extra->middle_trans;

    end_bextra.start_long = 0;
    end_bextra.start_trans = extra->middle_trans;
    end_bextra.middle_trans = extra->middle_trans;
    end_bextra.end_long = extra->end_long;
    end_bextra.end_trans = extra->end_trans;
  }

  bextra.start_long = 0;
  bextra.start_trans = extra->middle_trans;
  bextra.middle_trans = extra->middle_trans;
  bextra.end_long = 0;
  bextra.end_trans = extra->middle_trans;        


  for (i=1;i<numpoints;i++) {
    next = (i+1) % numpoints;
    prev = (i-1) % numpoints;
    if (closed && (next == 0)) next=1;
    if (closed && (prev == 0)) prev=numpoints-1;

    /* We have now: 
       i = index of current vertex. 
       prev,next: index of previous/next vertices (of the control polygon) 

       We want:
        vp, vx, vn: the previous, current and next vertices;
        start, end: TRUE if we're at an end of poly (then, vp and/or vn are not
        valid, respectively).

       Some values *will* be recomputed a few times across iterations (but stored in 
       different boxes). Either gprof says it's a real problem, or gcc finally gets 
       a clue.
    */

    if (pts[i].type == BEZ_MOVE_TO) {
      continue;
    }

    switch(pts[i].type) {
    case BEZ_MOVE_TO:
      g_assert_not_reached();
      break;
    case BEZ_LINE_TO:
      point_copy(&vx,&pts[i].p1);
      switch(pts[prev].type) {
      case BEZ_MOVE_TO:
      case BEZ_LINE_TO:
        point_copy(&vsc,&pts[prev].p1);
        point_copy(&vp,&pts[prev].p1);
        break;
      case BEZ_CURVE_TO:
        point_copy(&vsc,&pts[prev].p3);
        point_copy(&vp,&pts[prev].p3);
        break;
      }
      break;
    case BEZ_CURVE_TO:
      point_copy(&vx,&pts[i].p3);
      point_copy(&vp,&pts[i].p2);
      switch(pts[prev].type) {
      case BEZ_MOVE_TO:
      case BEZ_LINE_TO:
        point_copy(&vsc,&pts[prev].p1);
        break;
      case BEZ_CURVE_TO:
        point_copy(&vsc,&pts[prev].p3);
        break;
      } /* vsc is the start of the curve. */
      
      break;
    }
    start = (pts[prev].type == BEZ_MOVE_TO);
    end = (pts[next].type == BEZ_MOVE_TO);
    point_copy(&vn,&pts[next].p1); /* whichever type pts[next] is. */

    /* Now, we know about a few vertices around the one we're dealing with.
       Depending on the shape of the (previous,current) segment, and whether 
       it's a middle or end segment, we'll be doing different stuff. */ 
    if (closed) {
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox(&vsc,&vx,&full_lextra,&rt);
      } else {
        bicubicbezier2D_bbox(&vsc,
                             &pts[i].p1,&pts[i].p2,&pts[i].p3,
                             &bextra,
                             &rt);
      }    
    } else if (start) {
      if (pts[i].type == BEZ_LINE_TO) {
        if (end) {
          line_bbox(&vsc,&vx,&full_lextra,&rt);
        } else {
          line_bbox(&vsc,&vx,&start_lextra,&rt);
        }
      } else { /* BEZ_MOVE_TO */ 
        if (end) {
          bicubicbezier2D_bbox(&vsc,
                               &pts[i].p1,&pts[i].p2,&pts[i].p3,
                               &full_bextra,
                               &rt);
        } else {
          bicubicbezier2D_bbox(&vsc,
                               &pts[i].p1,&pts[i].p2,&pts[i].p3,
                               &start_bextra,
                               &rt);
        }
      }
    } else if (end) { /* end but not start. Not closed anyway. */
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox(&vsc,&vx,&end_lextra,&rt);
      } else {
        bicubicbezier2D_bbox(&vsc,
                             &pts[i].p1,&pts[i].p2,&pts[i].p3,
                             &end_bextra,
                             &rt);
      } 
    } else { /* normal case : middle segment (not closed shape). */
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox(&vsc,&vx,&lextra,&rt);
      } else {
        bicubicbezier2D_bbox(&vsc,
                             &pts[i].p1,&pts[i].p2,&pts[i].p3,
                             &bextra,
                             &rt);
      } 
    }   
    rectangle_union(rect,&rt);

    /* The following code enlarges a little the bounding box (if necessary) to 
       account with the "pointy corners" X (and PS) add when LINEJOIN_MITER mode is 
       in force. */

    if (!end) { /* only the last segment might not produce overshoot. */
      Point vpx,vxn;
      real co,alpha;

      point_copy_add_scaled(&vpx,&vx,&vp,-1);
      point_normalize(&vpx);
      point_copy_add_scaled(&vxn,&vn,&vx,-1);
      point_normalize(&vxn);

      co = point_dot(&vpx,&vxn);
      alpha = dia_acos(-co);
      if (co > -0.9816) { /* 0.9816 = cos(11deg) */
        /* we have a pointy join. */
        real overshoot;
        Point vovs,pto;

	if (alpha > 0.0 && alpha < M_PI)
	  overshoot = extra->middle_trans / sin(alpha/2.0);
	else /* prependicular? */
	  overshoot = extra->middle_trans;

        point_copy_add_scaled(&vovs,&vpx,&vxn,-1);
        point_normalize(&vovs);
        point_copy_add_scaled(&pto,&vx,&vovs,overshoot);
        
        rectangle_add_point(rect,&pto);
      } else {
        /* we don't have a pointy join. */
#if 0
	/* so nothing to do really - this code would be growing the
	 * bounding box arbitrarily. See e.g with bezier-extreme.dia
	 */
        Point vpxt,vxnt,tmp;

        point_get_perp(&vpxt,&vpx);
        point_get_perp(&vxnt,&vxn);
        
        point_copy_add_scaled(&tmp,&vx,&vpxt,1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vpxt,-1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vxnt,1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vxnt,-1);
        rectangle_add_point(rect,&tmp);
#endif
      }
    }
  }
}

/** Figure out a bounding box for a rectangle (fairly simple:)
 * @param rin A rectangle to find bbox for.
 * @param extra Extra information required to find bbox.
 * @param rout Return value: The enclosing bounding box.
 */
void 
rectangle_bbox(const Rectangle *rin,
	       const ElementBBExtras *extra,
	       Rectangle *rout)
{
  rout->left = rin->left - extra->border_trans;
  rout->top = rin->top - extra->border_trans;
  rout->right = rin->right + extra->border_trans;
  rout->bottom = rin->bottom + extra->border_trans;
}