1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
/* Dia -- an diagram creation/manipulation program
* Copyright (C) 1998 Alexander Larsson
*
* Matrix code from GIMP:app/transform_tool.c
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* include glib.h first, so we don't pick up its inline functions as well */
#include <config.h>
#include <glib.h>
/* include normal versions of the inlined functions here ... */
#undef G_INLINE_FUNC
#define G_INLINE_FUNC extern
#define G_CAN_INLINE 1
#include "geometry.h"
#include "object.h"
#include "units.h"
void
rectangle_union(Rectangle *r1, const Rectangle *r2)
{
r1->top = MIN( r1->top, r2->top );
r1->bottom = MAX( r1->bottom, r2->bottom );
r1->left = MIN( r1->left, r2->left );
r1->right = MAX( r1->right, r2->right );
}
void
int_rectangle_union(IntRectangle *r1, const IntRectangle *r2)
{
r1->top = MIN( r1->top, r2->top );
r1->bottom = MAX( r1->bottom, r2->bottom );
r1->left = MIN( r1->left, r2->left );
r1->right = MAX( r1->right, r2->right );
}
void
rectangle_intersection(Rectangle *r1, const Rectangle *r2)
{
r1->top = MAX( r1->top, r2->top );
r1->bottom = MIN( r1->bottom, r2->bottom );
r1->left = MAX( r1->left, r2->left );
r1->right = MIN( r1->right, r2->right );
/* Is rectangle empty? */
if ( (r1->top >= r1->bottom) ||
(r1->left >= r1->right) ) {
r1->top = r1->bottom = r1->left = r1->right = 0.0;
}
}
int
rectangle_intersects(const Rectangle *r1, const Rectangle *r2)
{
if ( (r1->right < r2->left) ||
(r1->left > r2->right) ||
(r1->top > r2->bottom) ||
(r1->bottom < r2->top) )
return FALSE;
return TRUE;
}
int
point_in_rectangle(const Rectangle* r, const Point *p)
{
if ( (p->x < r->left) ||
(p->x > r->right) ||
(p->y > r->bottom) ||
(p->y < r->top) )
return FALSE;
return TRUE;
}
int
rectangle_in_rectangle(const Rectangle* outer, const Rectangle *inner)
{
if ( (inner->left < outer->left) ||
(inner->right > outer->right) ||
(inner->top < outer->top) ||
(inner->bottom > outer->bottom))
return FALSE;
return TRUE;
}
void
rectangle_add_point(Rectangle *r, const Point *p)
{
if (p->x < r->left)
r->left = p->x;
else if (p->x > r->right)
r->right = p->x;
if (p->y < r->top)
r->top = p->y;
else if (p->y > r->bottom)
r->bottom = p->y;
}
/*
* This function estimates the distance from a point to a rectangle.
* If the point is in the rectangle, 0.0 is returned. Otherwise the
* distance in a manhattan metric from the point to the nearest point
* on the rectangle is returned.
*/
real
distance_rectangle_point(const Rectangle *rect, const Point *point)
{
real dx = 0.0;
real dy = 0.0;
if (point->x < rect->left ) {
dx = rect->left - point->x;
} else if (point->x > rect->right ) {
dx = point->x - rect->right;
}
if (point->y < rect->top ) {
dy = rect->top - point->y;
} else if (point->y > rect->bottom ) {
dy = point->y - rect->bottom;
}
return dx + dy;
}
/*
* This function estimates the distance from a point to a line segment
* specified by two endpoints.
* If the point is on the line segment, 0.0 is returned. Otherwise the
* distance in the R^2 metric from the point to the nearest point
* on the line segment is returned. Does one sqrt per call.
* Philosophical bug: line_width is ignored iff point is beyond
* end of line segment.
*/
real
distance_line_point(const Point *line_start, const Point *line_end,
real line_width, const Point *point)
{
Point v1, v2;
real v1_lensq;
real projlen;
real perp_dist;
v1 = *line_end;
point_sub(&v1,line_start);
v2 = *point;
point_sub(&v2, line_start);
v1_lensq = point_dot(&v1,&v1);
if (v1_lensq<0.000001) {
return sqrt(point_dot(&v2,&v2));
}
projlen = point_dot(&v1,&v2) / v1_lensq;
if (projlen<0.0) {
return sqrt(point_dot(&v2,&v2));
}
if (projlen>1.0) {
Point v3 = *point;
point_sub(&v3,line_end);
return sqrt(point_dot(&v3,&v3));
}
point_scale(&v1, projlen);
point_sub(&v1, &v2);
perp_dist = sqrt(point_dot(&v1,&v1));
perp_dist -= line_width / 2.0;
if (perp_dist < 0.0) {
perp_dist = 0.0;
}
return perp_dist;
}
/* returns 1 if the line crosses the ray from (-Inf, rayend.y) to rayend */
static int
line_crosses_ray(const Point *line_start,
const Point *line_end, const Point *rayend)
{
if ((line_start->y <= rayend->y && line_end->y > rayend->y) || /* upward crossing */
(line_start->y > rayend->y && line_end->y <= rayend->y)) { /* downward crossing */
real vt = (rayend->y - line_start->y) / (line_end->y - line_start->y);
if (rayend->x < line_start->x + vt * (line_end->x - line_start->x)) /* intersect */
return 1;
}
return 0;
}
real
distance_polygon_point(const Point *poly, guint npoints, real line_width,
const Point *point)
{
guint i, last = npoints - 1;
real line_dist = G_MAXFLOAT;
guint crossings = 0;
/* calculate ray crossings and line distances */
for (i = 0; i < npoints; i++) {
real dist;
crossings += line_crosses_ray(&poly[last], &poly[i], point);
dist = distance_line_point(&poly[last], &poly[i], line_width, point);
line_dist = MIN(line_dist, dist);
last = i;
}
/* If there is an odd number of ray crossings, we are inside the polygon.
* Otherwise, return the minium distance from a line segment */
if (crossings % 2 == 1)
return 0.0;
else
return line_dist;
}
/* number of segments to use in bezier curve approximation */
#define NBEZ_SEGS 10
/* if cross is not NULL, it will be incremented for each ray crossing */
static real
bez_point_distance_and_ray_crosses(const Point *b1,
const Point *b2, const Point *b3,
const Point *b4,
real line_width, const Point *point,
guint *cross)
{
static gboolean calculated_coeff = FALSE;
static real coeff[NBEZ_SEGS+1][4];
int i;
real line_dist = G_MAXFLOAT;
Point prev, pt;
if (!calculated_coeff) {
for (i = 0; i <= NBEZ_SEGS; i++) {
real t1 = ((real)i)/NBEZ_SEGS, t2 = t1*t1, t3 = t1*t2;
real it1 = 1-t1, it2 = it1*it1, it3 = it1*it2;
coeff[i][0] = it3;
coeff[i][1] = 3 * t1 * it2;
coeff[i][2] = 3 * t2 * it1;
coeff[i][3] = t3;
}
}
calculated_coeff = TRUE;
prev.x = coeff[0][0] * b1->x + coeff[0][1] * b2->x +
coeff[0][2] * b3->x + coeff[0][3] * b4->x;
prev.y = coeff[0][0] * b1->y + coeff[0][1] * b2->y +
coeff[0][2] * b3->y + coeff[0][3] * b4->y;
for (i = 1; i <= NBEZ_SEGS; i++) {
real dist;
pt.x = coeff[i][0] * b1->x + coeff[i][1] * b2->x +
coeff[i][2] * b3->x + coeff[i][3] * b4->x;
pt.y = coeff[i][0] * b1->y + coeff[i][1] * b2->y +
coeff[i][2] * b3->y + coeff[i][3] * b4->y;
dist = distance_line_point(&prev, &pt, line_width, point);
line_dist = MIN(line_dist, dist);
if (cross)
*cross += line_crosses_ray(&prev, &pt, point);
prev = pt;
}
return line_dist;
}
real
distance_bez_seg_point(const Point *b1, const BezPoint *b2,
real line_width, const Point *point)
{
if (b2->type == BEZ_CURVE_TO)
return bez_point_distance_and_ray_crosses(b1, &b2->p1, &b2->p2, &b2->p3,
line_width, point, NULL);
else
return distance_line_point(b1, &b2->p1, line_width, point);
}
real
distance_bez_line_point(const BezPoint *b, guint npoints,
real line_width, const Point *point)
{
Point last;
guint i;
real line_dist = G_MAXFLOAT;
g_return_val_if_fail(b[0].type == BEZ_MOVE_TO, -1);
last = b[0].p1;
for (i = 1; i < npoints; i++) {
real dist;
switch (b[i].type) {
case BEZ_MOVE_TO:
last = b[i].p1;
break;
case BEZ_LINE_TO:
dist = distance_line_point(&last, &b[i].p1, line_width, point);
line_dist = MIN(line_dist, dist);
last = b[i].p1;
break;
case BEZ_CURVE_TO:
dist = bez_point_distance_and_ray_crosses(&last, &b[i].p1, &b[i].p2,
&b[i].p3, line_width, point,
NULL);
line_dist = MIN(line_dist, dist);
last = b[i].p3;
break;
}
}
return line_dist;
}
real
distance_bez_shape_point(const BezPoint *b, guint npoints,
real line_width, const Point *point)
{
Point last;
const Point *close_to; /* path must be closed to calculate distance */
guint i;
real line_dist = G_MAXFLOAT;
guint crossings = 0;
g_return_val_if_fail(b[0].type == BEZ_MOVE_TO, -1);
last = b[0].p1;
close_to = &b[0].p1;
for (i = 1; i < npoints; i++) {
real dist;
switch (b[i].type) {
case BEZ_MOVE_TO:
/* no complains, there are renderers capable to handle this */
last = b[i].p1;
close_to = &b[i].p1;
break;
case BEZ_LINE_TO:
dist = distance_line_point(&last, &b[i].p1, line_width, point);
crossings += line_crosses_ray(&last, &b[i].p1, point);
line_dist = MIN(line_dist, dist);
last = b[i].p1;
if (close_to && close_to->x == last.x && close_to->y == last.y)
close_to = NULL;
break;
case BEZ_CURVE_TO:
dist = bez_point_distance_and_ray_crosses(&last, &b[i].p1, &b[i].p2,
&b[i].p3, line_width, point,
&crossings);
line_dist = MIN(line_dist, dist);
last = b[i].p3;
if (close_to && close_to->x == last.x && close_to->y == last.y)
close_to = NULL;
break;
}
}
if (close_to) {
/* final, implicit line-to */
real dist = distance_line_point(&last, close_to, line_width, point);
crossings += line_crosses_ray(&last, close_to, point);
line_dist = MIN(line_dist, dist);
}
/* If there is an odd number of ray crossings, we are inside the polygon.
* Otherwise, return the minimum distance from a line segment */
if (crossings % 2 == 1)
return 0.0;
else
return line_dist;
}
real
distance_ellipse_point(const Point *centre, real width, real height,
real line_width, const Point *point)
{
/* A faster intersection method would be to scaled the ellipse and the
* point to where the ellipse is a circle, intersect with the circle,
* then scale back.
*/
real w2 = width*width, h2 = height*height;
real scale, rad, dist;
Point pt;
/* find the radius of the ellipse in the appropriate direction */
/* find the point of intersection between line (x=cx+(px-cx)t; y=cy+(py-cy)t)
* and ellipse ((x-cx)^2)/(w/2)^2 + ((y-cy)^2)/(h/2)^2 = 1 */
/* radius along ray is sqrt((px-cx)^2 * t^2 + (py-cy)^2 * t^2) */
pt = *point;
point_sub(&pt, centre);
pt.x *= pt.x;
pt.y *= pt.y; /* pt = (point - centre).^2 */
if (pt.x <= 0.0 && pt.y <= 0.0)
return 0.0; /* instead of division by zero */
scale = w2 * h2 / (4*h2*pt.x + 4*w2*pt.y);
rad = sqrt((pt.x + pt.y)*scale) + line_width/2;
dist = sqrt(pt.x + pt.y);
if (dist <= rad)
return 0.0;
else
return dist - rad;
}
void
transform_point (Point *pt, const DiaMatrix *m)
{
real x, y;
g_return_if_fail (pt != NULL && m != NULL);
x = pt->x;
y = pt->y;
pt->x = x * m->xx + y * m->xy + m->x0;
pt->y = x * m->yx + y * m->yy + m->y0;
}
void
transform_length (real *len, const DiaMatrix *m)
{
Point pt = { *len, 0 };
transform_point (&pt, m);
/* not interested in the offset */
pt.x -= m->x0;
pt.y -= m->y0;
*len = point_len (&pt);
}
void
transform_bezpoint (BezPoint *bpt, const DiaMatrix *m)
{
transform_point (&bpt->p1, m);
transform_point (&bpt->p2, m);
transform_point (&bpt->p3, m);
}
void
point_convex(Point *dst, const Point *src1, const Point *src2, real alpha)
{
/* Make convex combination of src1 and src2:
dst = alpha * src1 + (1-alpha) * src2;
*/
point_copy(dst,src1);
point_scale(dst,alpha);
point_add_scaled(dst,src2,1.0 - alpha);
}
/* The following functions were originally taken from Graphics Gems III,
pg 193 and corresponding code pgs 496-499
They were modified to work within the dia coordinate system
*/
/* return angle subtended by two vectors */
real dot2(Point *p1, Point *p2)
{
real d, t;
d = sqrt(((p1->x*p1->x)+(p1->y*p1->y)) *
((p2->x*p2->x)+(p2->y*p2->y)));
if ( d != 0.0 )
{
t = (p1->x*p2->x+p1->y*p2->y)/d;
return (dia_acos(t));
}
else
{
return 0.0;
}
}
/* Find a,b,c in ax + by + c = 0 for line p1, p2 */
void line_coef(real *a, real *b, real *c, Point *p1, Point *p2)
{
*c = ( p2->x * p1->y ) - ( p1->x * p2->y );
*a = p2->y - p1->y;
*b = p1->x - p2->x;
}
/* Return signed distance from line
ax + by + c = 0 to point p. */
real line_to_point(real a, real b , real c, Point *p) {
real d, lp;
d = sqrt((a*a)+(b*b));
if ( d == 0.0 ) {
lp = 0.0;
} else {
lp = (a*p->x+b*p->y+c)/d;
}
return (lp);
}
/* Given line l = ax + by + c = 0 and point p,
compute x,y so point perp is perpendicular to line l. */
void point_perp(Point *p, real a, real b, real c, Point *perp) {
real d, cp;
perp->x = 0.0;
perp->y = 0.0;
d = a*a + b*b;
cp = a*p->y-b*p->x;
if ( d != 0.0 ) {
perp->x = (-a*c-b*cp)/d;
perp->y = (a*cp-b*c)/d;
}
return;
}
gboolean
line_line_intersection (Point *crossing,
const Point *p1, const Point *p2,
const Point *p3, const Point *p4)
{
real d = (p1->x - p2->x) * (p3->y - p4->y) - (p1->y - p2->y) * (p3->x - p4->x);
real a, b;
if (fabs(d) < 0.0000001)
return FALSE;
a = p1->x * p2->y - p1->y * p2->x;
b = p3->x * p4->y - p3->y * p4->x;
crossing->x = (a * (p3->x - p4->x) - (p1->x - p2->x) * b) / d;
crossing->y = (a * (p3->y - p4->y) - (p1->y - p2->y) * b) / d;
return TRUE;
}
/* Compute a circular arc fillet between lines L1 (p1 to p2)
and L2 (p3 to p4) with radius r.
The circle center is c.
The start angle is pa
The end angle is aa,
The points p1-p4 will be modified as necessary */
gboolean
fillet(Point *p1, Point *p2, Point *p3, Point *p4,
real r, Point *c, real *pa, real *aa)
{
real a1, b1, c1; /* Coefficients for L1 */
real a2, b2, c2; /* Coefficients for L2 */
real d, d1, d2;
real c1p, c2p;
real rr;
real start_angle, stop_angle;
Point mp,gv1,gv2;
gboolean righthand = FALSE;
line_coef(&a1,&b1,&c1,p1,p2);
line_coef(&a2,&b2,&c2,p3,p4);
if ( (a1*b2) == (a2*b1) ) /* Parallel or coincident lines */
return FALSE;
mp.x = (p3->x + p4->x) / 2.0; /* Find midpoint of p3 p4 */
mp.y = (p3->y + p4->y) / 2.0;
d1 = line_to_point(a1, b1, c1, &mp); /* Find distance p1 p2 to
midpoint p3 p4 */
if ( d1 == 0.0 ) return FALSE; /* p1p2 to p3 */
mp.x = (p1->x + p2->x) / 2.0; /* Find midpoint of p1 p2 */
mp.y = (p1->y + p2->y) / 2.0;
d2 = line_to_point(a2, b2, c2, &mp); /* Find distance p3 p4 to
midpoint p1 p2 */
if ( d2 == 0.0 ) return FALSE;
rr = r;
if ( d1 <= 0.0 ) rr = -rr;
c1p = c1-rr*sqrt((a1*a1)+(b1*b1)); /* Line parallell l1 at d */
rr = r;
if ( d2 <= 0.0 ) rr = -rr;
c2p = c2-rr*sqrt((a2*a2)+(b2*b2)); /* Line parallell l2 at d */
d = a1*b2-a2*b1;
c->x = ( c2p*b1-c1p*b2 ) / d; /* Intersect constructed lines */
c->y = ( c1p*a2-c2p*a1 ) / d; /* to find center of arc */
point_perp(c,a1,b1,c1,p2); /* Clip or extend lines as required */
point_perp(c,a2,b2,c2,p3);
/* need to negate the y coords to calculate angles correctly */
gv1.x = p2->x-c->x; gv1.y = -(p2->y-c->y);
gv2.x = p3->x-c->x; gv2.y = -(p3->y-c->y);
start_angle = atan2(gv1.y,gv1.x); /* Beginning angle for arc */
stop_angle = dot2(&gv1,&gv2);
righthand = point_cross(&gv1,&gv2) < 0.0;
/* now calculate the actual angles in a form that the draw_arc function
of the renderer can use */
start_angle = start_angle*180.0/G_PI;
if (righthand)
stop_angle = -stop_angle;
stop_angle = start_angle + stop_angle*180.0/G_PI;
*pa = start_angle;
*aa = stop_angle;
return TRUE;
}
int
three_point_circle (const Point *p1, const Point *p2, const Point *p3,
Point* center, real* radius)
{
const real epsilon = 1e-4;
real x1 = p1->x;
real y1 = p1->y;
real x2 = p2->x;
real y2 = p2->y;
real x3 = p3->x;
real y3 = p3->y;
real ma, mb;
if (fabs(x2 - x1) < epsilon)
return 0;
if (fabs(x3 - x2) < epsilon)
return 0;
ma = (y2 - y1) / (x2 - x1);
mb = (y3 - y2) / (x3 - x2);
if (fabs (mb - ma) < epsilon)
return 0;
center->x = (ma*mb*(y1-y3)+mb*(x1+x2)-ma*(x2+x3))/(2*(mb-ma));
if (fabs(ma)>epsilon)
center->y = -1/ma*(center->x - (x1+x2)/2.0) + (y1+y2)/2.0;
else if (fabs(mb)>epsilon)
center->y = -1/mb*(center->x - (x2+x3)/2.0) + (y2+y3)/2.0;
else
return 0;
*radius = distance_point_point(center, p1);
return 1;
}
/* moved this here since it is being reused by rounded polyline code*/
real
point_cross(Point *p1, Point *p2)
{
return p1->x * p2->y - p2->x * p1->y;
}
/* moved this here since it is used by line and bezier */
/* Computes one point between end and objmid which
* touches the edge of the object */
Point
calculate_object_edge(Point *objmid, Point *end, DiaObject *obj)
{
#define MAXITER 25
#ifdef TRACE_DIST
Point trace[MAXITER];
real disttrace[MAXITER];
#endif
Point mid1, mid2, mid3;
real dist;
int i = 0;
mid1 = *objmid;
mid2.x = (objmid->x+end->x)/2;
mid2.y = (objmid->y+end->y)/2;
mid3 = *end;
/* If the other end is inside the object */
dist = obj->ops->distance_from(obj, &mid3);
if (dist < 0.001) return mid1;
do {
dist = obj->ops->distance_from(obj, &mid2);
if (dist < 0.0000001) {
mid1 = mid2;
} else {
mid3 = mid2;
}
mid2.x = (mid1.x + mid3.x)/2;
mid2.y = (mid1.y + mid3.y)/2;
#ifdef TRACE_DIST
trace[i] = mid2;
disttrace[i] = dist;
#endif
i++;
} while (i < MAXITER && (dist < 0.0000001 || dist > 0.001));
#ifdef TRACE_DIST
if (i == MAXITER) {
for (i = 0; i < MAXITER; i++) {
fprintf(stderr, "%d: %f, %f: %f\n", i, trace[i].x, trace[i].y, disttrace[i]);
}
fprintf(stderr, "i = %d, dist = %f\n", i, dist);
}
#endif
return mid2;
}
/*!
* \brief Check the matrix if it has any effect
* @param matrix matrix to check
* \extends _DiaMatrix
*/
gboolean
dia_matrix_is_identity (const DiaMatrix *matrix)
{
const real epsilon = 1e-6;
if ( fabs(matrix->xx - 1.0) < epsilon
&& fabs(matrix->yy - 1.0) < epsilon
&& fabs(matrix->xy) < epsilon
&& fabs(matrix->yx) < epsilon
&& fabs(matrix->x0) < epsilon
&& fabs(matrix->y0) < epsilon)
return TRUE;
return FALSE;
}
void
dia_matrix_multiply (DiaMatrix *result, const DiaMatrix *a, const DiaMatrix *b)
{
DiaMatrix r;
r.xx = a->xx * b->xx + a->yx * b->xy;
r.yx = a->xx * b->yx + a->yx * b->yy;
r.xy = a->xy * b->xx + a->yy * b->xy;
r.yy = a->xy * b->yx + a->yy * b->yy;
r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
*result = r;
}
/*!
* \brief Splitting the given matrix into angle and scales
* @param m matrix
* @param a angle in radians
* @param sx horizontal scale
* @param sy vertical scale
*
* \code
* with scale rotate
* xx yx sx 0 cos(x) sin(x)
* xy yy 0 sy -sin(x) cos(x)
*
* rxx = sx * cos(a) + 0 * -sin(a)
* ryx = sx * sin(a) + 0 * cos(a)
* rxy = 0 * cos(a) + sy * -sin(a)
* ryy = 0 * -sin(a) + sy * cos(a)
* \endcode
* \extends _DiaMatrix
*/
gboolean
dia_matrix_get_angle_and_scales (const DiaMatrix *m,
real *a,
real *sx,
real *sy)
{
const real epsilon = 1e-6;
gboolean no_skew;
real ratio; /* the ratio of the sx/sy */
real rxx, ryx, rxy, ryy;
real len1, len2;
real angle;
real c, s;
ratio = m->xx / m->yy;
/* correct for uniform scale */
rxx = m->xx / ratio;
ryx = m->yx / ratio;
rxy = m->xy;
ryy = m->yy;
/* w/o scale it would be len==1 */
len1 = sqrt(rxx * rxx + ryx * ryx);
len2 = sqrt(rxy * rxy + ryy * ryy);
no_skew = fabs(len1 - len2) < epsilon;
angle = atan2(ryx, rxx);
if (a)
*a = angle;
c = fabs(cos(angle));
s = fabs(sin(angle));
if (sx)
*sx = fabs(c > s ? m->xx / c : m->yx / s);
if (sy)
*sy = fabs(s > c ? m->xy / s : m->yy / c);
return no_skew;
}
/*!
* \brief Scale in the coordinate system of the shape, afterwards rotate
* @param m matrix
* @param a angle in radians
* @param sx horizontal scale
* @param sy vertical scale
* \extends _DiaMatrix
*/
void
dia_matrix_set_angle_and_scales (DiaMatrix *m,
real a,
real sx,
real sy)
{
real dx = m->x0;
real dy = m->y0;
cairo_matrix_init_rotate ((cairo_matrix_t *)m, a);
cairo_matrix_scale ((cairo_matrix_t *)m, sx, sy);
m->x0 = dx;
m->y0 = dy;
}
gboolean
dia_matrix_is_invertible (const DiaMatrix *matrix)
{
double a, b, c, d;
double det;
a = matrix->xx; b = matrix->yx;
c = matrix->xy; d = matrix->yy;
det = a*d - b*c;
return finite(det) && det != 0.0;
}
void
dia_matrix_set_rotate_around (DiaMatrix *result,
real angle,
const Point *around)
{
DiaMatrix m = { 1.0, 0.0, 0.0, 1.0, around->x, around->y };
DiaMatrix t = { 1.0, 0.0, 0.0, 1.0, -around->x, -around->y };
dia_matrix_set_angle_and_scales (&m, angle, 1.0, 1.0);
dia_matrix_multiply (result, &t, &m);
}
/*!
* \brief asin wrapped to limit to valid result range
*
* Although clipping the value might hide some miscalculation
* elsewhere this should still be used in all of Dia. Continuing
* calculation with bogus values might final fall on our foots
* because rendering libraries might not be graceful.
* See https://bugzilla.gnome.org/show_bug.cgi?id=710818
*/
real
dia_asin (real x)
{
/* clamp to valid range */
if (x <= -1.0)
return -M_PI/2;
if (x >= 1.0)
return M_PI/2;
return asin (x);
}
/*!
* \brief acos wrapped to limit to valid result range
*/
real
dia_acos (real x)
{
/* clamp to valid range */
if (x <= -1.0)
return M_PI;
if (x >= 1.0)
return 0.0;
return acos (x);
}
|