File: geometry.h

package info (click to toggle)
dia 0.97.3%2Bgit20160930-9
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 54,372 kB
  • sloc: ansic: 155,065; xml: 16,326; python: 6,641; cpp: 4,935; makefile: 3,833; sh: 540; perl: 137; sed: 19
file content (386 lines) | stat: -rw-r--r-- 10,843 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/* Dia -- an diagram creation/manipulation program
 * Copyright (C) 1998 Alexander Larsson
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/** \file geometry.h -- basic geometry classes and functions operationg on them */
#ifndef GEOMETRY_H
#define GEOMETRY_H

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "diatypes.h"

#include <glib.h>
#include <math.h>

/* Solaris 2.4, 2.6, probably 2.5.x, and possibly others prototype
   finite() in ieeefp.h instead of math.h.  finite() might not be
   available at all on some HP-UX configurations (in which case,
   you're on your own). */
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#ifndef HAVE_ISINF
#  ifndef isinf
#    define isinf(a) (!finite(a))
#  endif
#endif

#ifdef _MSC_VER 
/* #ifdef G_OS_WIN32  apparently _MSC_VER and mingw */
   /* there are some things more in the gcc headers */
#  include <float.h>
#  define finite(a) _finite(a)
#  ifndef isnan
#    define isnan(a) _isnan(a)
#  endif
#endif
#ifdef G_OS_WIN32
#  define M_PI      3.14159265358979323846
#  define M_SQRT2	1.41421356237309504880	/* sqrt(2) */
#  define M_SQRT1_2 0.70710678118654752440	/* 1/sqrt(2) */
#endif

/* gcc -std=c89 doesn't have it either */
#ifndef M_PI
#define M_PI G_PI
#endif
#ifndef M_SQRT2
#define M_SQRT2 G_SQRT2
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 (1.0/G_SQRT2)
#endif

G_BEGIN_DECLS


/*
  Coordinate system used:
   +---> x
   |
   |
   V  y
 */
typedef real coord;

/*! \brief A two dimensional position */
struct _Point {
  coord x; /*!< horizontal */
  coord y; /*!< vertical */
};

/*! \brief A rectangle given by upper left and lower right corner */
struct _Rectangle {
  coord left; /*!< x1 */
  coord top; /*!< y1 */
  coord right; /*!< x2 */
  coord bottom; /*!< y2 */
};

/*! \brief A rectangle for fixed point e.g. pixel coordinates */
struct _IntRectangle {
  int left; /*!< x1 */
  int top; /*!< y1 */
  int right; /*!< x2 */
  int bottom; /*!< y2 */
};

/*! 
 * \brief BezPoint is a bezier point forming _Bezierline or _Beziergon
 * \ingroup ObjectParts
 */
struct _BezPoint {
  enum {
    BEZ_MOVE_TO, /*!< move to point p1 */
    BEZ_LINE_TO, /*!< line to point p1 */
    BEZ_CURVE_TO /*!< curve to point p3 using p1 and p2 as control points */
  } type;
  Point p1; /*!< main point in case of move or line-to, otherwise first control point */
  Point p2; /*!< second control point  */
  Point p3; /*!< main point for 'true' bezier point */
};

/*!
 * \brief DiaMatrix used for affine transformation
 *
 * The struct is intentionally binary compatible with cairo_matrix_t.
 *
 * \ingroup ObjectParts
 */
struct _DiaMatrix {
  real xx; real yx;
  real xy; real yy;
  real x0; real y0;
};

gboolean dia_matrix_is_identity (const DiaMatrix *matix);
gboolean dia_matrix_get_angle_and_scales (const DiaMatrix *m,
                                          real            *a,
					  real            *sx,
					  real            *sy);
void dia_matrix_set_angle_and_scales (DiaMatrix *m,
                                      real       a,
				      real       sx,
				      real       sy);
void dia_matrix_multiply (DiaMatrix *result, const DiaMatrix *a, const DiaMatrix *b);
gboolean dia_matrix_is_invertible (const DiaMatrix *matrix);
void dia_matrix_set_rotate_around (DiaMatrix *result, real angle, const Point *around);

#define ROUND(x) ((int) floor((x)+0.5))

/* inline these functions if the platform supports it */

G_INLINE_FUNC void point_add(Point *p1, const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_add(Point *p1, const Point *p2)
{
  p1->x += p2->x;
  p1->y += p2->y;
}
#endif

G_INLINE_FUNC void point_sub(Point *p1, const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_sub(Point *p1, const Point *p2)
{
  p1->x -= p2->x;
  p1->y -= p2->y;
}
#endif

G_INLINE_FUNC real point_dot(const Point *p1, const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC real
point_dot(const Point *p1, const Point *p2)
{
  return p1->x*p2->x + p1->y*p2->y;
}
#endif

G_INLINE_FUNC real point_len(const Point *p);
#ifdef G_CAN_INLINE
G_INLINE_FUNC real
point_len(const Point *p)
{
  return sqrt(p->x*p->x + p->y*p->y);
}
#endif

G_INLINE_FUNC void point_scale(Point *p, real alpha);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_scale(Point *p, real alpha)
{
  p->x *= alpha;
  p->y *= alpha;
}
#endif

G_INLINE_FUNC void point_normalize(Point *p);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_normalize(Point *p)
{
  real len;

  len = sqrt(p->x*p->x + p->y*p->y);
  
  /* One could call it a bug to try normalizing a vector with
   * len 0 and the result at least requires definition. But
   * this is what makes the beziergon bounding box calculation
   * work. What's the mathematical correct result of 0.0/0.0 ? 
   */
  if (len > 0.0) {
    p->x /= len;
    p->y /= len;
  } else {
    p->x = 0.0;
    p->y = 0.0;
  }

}
#endif

G_INLINE_FUNC void point_rotate(Point *p1, const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_rotate(Point *p1, const Point *p2)
{
  p1->x = p1->x*p2->x - p1->y*p2->y;
  p1->y = p1->x*p2->y + p1->y*p2->x;
}
#endif

G_INLINE_FUNC void point_get_normed(Point *dst, const Point *src);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_get_normed(Point *dst, const Point *src)
{
  real len;

  len = sqrt(src->x*src->x + src->y*src->y);
  
  dst->x = src->x / len;
  dst->y = src->y / len;
}
#endif

G_INLINE_FUNC void point_get_perp(Point *dst, const Point *src);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void
point_get_perp(Point *dst, const Point *src)
{
  /* dst = the src vector, rotated 90deg counter clowkwise. src *must* be 
     normalized before. */
  dst->y = src->x;
  dst->x = -src->y;
}
#endif

G_INLINE_FUNC void point_copy(Point *dst, const Point *src);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void 
point_copy(Point *dst, const Point *src)
{
  /* Unfortunately, the compiler is not clever enough. And copying using
     ints is faster if we don't computer based on the copied values, but
     is slower if we have to make a FP reload afterwards. 
     point_copy() is meant for the latter case : then, the compiler is 
     able to shuffle and merge the FP loads. */
  dst->x = src->x;
  dst->y = src->y;
}
#endif

G_INLINE_FUNC void point_add_scaled(Point *dst, const Point *src, real alpha);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void 
point_add_scaled(Point *dst, const Point *src, real alpha)
{
  /* especially useful if src is a normed vector... */
  dst->x += alpha * src->x;
  dst->y += alpha * src->y;
}
#endif

G_INLINE_FUNC void point_copy_add_scaled(Point *dst, const Point *src, 
                                         const Point *vct,
					 real alpha);
#ifdef G_CAN_INLINE
G_INLINE_FUNC void 
point_copy_add_scaled(Point *dst, const Point *src, 
                      const Point *vct, real alpha)
{
  /* especially useful if vct is a normed vector... */
  dst->x = src->x + (alpha * vct->x);
  dst->y = src->y + (alpha * vct->y);
}
#endif

void point_convex(Point *dst, const Point *src1, const Point *src2, real alpha);

void rectangle_union(Rectangle *r1, const Rectangle *r2);
void int_rectangle_union(IntRectangle *r1, const IntRectangle *r2);
void rectangle_intersection(Rectangle *r1, const Rectangle *r2);
int rectangle_intersects(const Rectangle *r1, const Rectangle *r2);
int point_in_rectangle(const Rectangle* r, const Point *p);
int rectangle_in_rectangle(const Rectangle* outer, const Rectangle *inner);
void rectangle_add_point(Rectangle *r, const Point *p);

G_INLINE_FUNC gboolean rectangle_equals(const Rectangle *old_extents, 
                                         const Rectangle *new_extents);
#ifdef G_CAN_INLINE
G_INLINE_FUNC gboolean 
rectangle_equals(const Rectangle *r1, const Rectangle *r2)
{
  return ( (r2->left == r1->left) &&
           (r2->right == r1->right) &&
           (r2->top == r1->top) &&
           (r2->bottom == r1->bottom) );  
}
#endif

G_INLINE_FUNC real distance_point_point(const Point *p1, const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC real
distance_point_point(const Point *p1, const Point *p2)
{
  real dx = p1->x - p2->x;
  real dy = p1->y - p2->y;
  return sqrt(dx*dx + dy*dy);
}
#endif

G_INLINE_FUNC real distance_point_point_manhattan(const Point *p1, 
                                                  const Point *p2);
#ifdef G_CAN_INLINE
G_INLINE_FUNC real
distance_point_point_manhattan(const Point *p1, const Point *p2)
{
  real dx = p1->x - p2->x;
  real dy = p1->y - p2->y;
  return ABS(dx) + ABS(dy);
}
#endif

real distance_rectangle_point(const Rectangle *rect, const Point *point);
real distance_line_point(const Point *line_start, const Point *line_end,
			 real line_width, const Point *point);

real distance_polygon_point(const Point *poly, guint npoints,
			    real line_width, const Point *point);

/* bezier distance calculations */
real distance_bez_seg_point(const Point *b1, const BezPoint *b2,
			    real line_width, const Point *point);
real distance_bez_line_point(const BezPoint *b, guint npoints,
			     real line_width, const Point *point);
real distance_bez_shape_point(const BezPoint *b, guint npoints,
			      real line_width, const Point *point);

real distance_ellipse_point(const Point *centre, real width, real height,
			    real line_width, const Point *point);

void transform_length (real *length, const DiaMatrix *m);
void transform_point (Point *pt, const DiaMatrix *m);
void transform_bezpoint (BezPoint *bpt, const DiaMatrix *m);

real dot2(Point *p1, Point *p2);
void line_coef(real *a, real *b, real *c, Point *p1, Point *p2);
real line_to_point(real a, real b , real c, Point *p);
gboolean line_line_intersection (Point *crossing,
				 const Point *p1, const Point *p2,
				 const Point *p3, const Point *p4);
void point_perp(Point *p, real a, real b, real c, Point *perp);
gboolean fillet(Point *p1, Point *p2, Point *p3, Point *p4,
		real r, Point *c, real *pa, real *aa);
int  three_point_circle(const Point *p1, const Point *p2, const Point *p3,
                        Point* center, real* radius);
real point_cross(Point *p1, Point *p2);
Point calculate_object_edge(Point *objmid, Point *end, DiaObject *obj);

real dia_asin (real x);
real dia_acos (real x);

G_END_DECLS

#endif /* GEOMETRY_H */