1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* Dia -- an diagram creation/manipulation program
* Copyright (C) 1998 Alexander Larsson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/** \file geometry.h -- basic geometry classes and functions operationg on them */
#ifndef GEOMETRY_H
#define GEOMETRY_H
#include <config.h>
#include "diatypes.h"
#include <glib.h>
#include <math.h>
G_BEGIN_DECLS
#define DIA_RADIANS(degrees) ((degrees) * G_PI / 180.0)
#define DIA_DEGREES(radians) ((radians) * 180.0 / G_PI)
/*
Coordinate system used:
+---> x
|
|
V y
*/
/**
* Point:
* @x: horizontal
* @y: vertical
*
* A two dimensional position
*
* Since: dawn-of-time
*/
struct _Point {
double x;
double y;
};
/**
* DiaRectangle:
* @left: top left x co-ord
* @top: top left y co-ord
* @right: bottom right x co-ord
* @button: bottom right y co-ord
*
* A rectangle given by upper left and lower right corner
*
* Since: 0.98
*/
struct _DiaRectangle {
double left;
double top;
double right;
double bottom;
};
/**
* BezPoint:
* @BEZ_MOVE_TO: move to point @p1
* @BEZ_LINE_TO: line to point @p1
* @BEZ_CURVE_TO: curve to point @p3 using @p1 and @p2 as control points
* @p1: main point in case of move or line-to, otherwise first control point
* @p2: second control point
* @p3: main point for 'true' bezier point
*
* #BezPoint is a bezier point forming #Bezierline or #Beziergon
*
* Since: dawn-of-time
*/
struct _BezPoint {
enum {
BEZ_MOVE_TO, /*!< move to point p1 */
BEZ_LINE_TO, /*!< line to point p1 */
BEZ_CURVE_TO /*!< curve to point p3 using p1 and p2 as control points */
} type;
Point p1; /*!< main point in case of move or line-to, otherwise first control point */
Point p2; /*!< second control point */
Point p3; /*!< main point for 'true' bezier point */
};
/**
* DiaMatrix:
*
* #DiaMatrix used for affine transformation
*
* The struct is intentionally binary compatible with #cairo_matrix_t.
*
* Since: dawn-of-time
*/
struct _DiaMatrix {
double xx;
double yx;
double xy;
double yy;
double x0;
double y0;
};
gboolean dia_matrix_is_identity (const DiaMatrix *matix);
gboolean dia_matrix_get_angle_and_scales (const DiaMatrix *m,
double *a,
double *sx,
double *sy);
void dia_matrix_set_angle_and_scales (DiaMatrix *m,
double a,
double sx,
double sy);
void dia_matrix_multiply (DiaMatrix *result,
const DiaMatrix *a,
const DiaMatrix *b);
gboolean dia_matrix_is_invertible (const DiaMatrix *matrix);
void dia_matrix_set_rotate_around (DiaMatrix *result,
double angle,
const Point *around);
#define ROUND(x) ((int) floor((x)+0.5))
/* inline these functions if the platform supports it */
static inline void
point_add(Point *p1, const Point *p2)
{
p1->x += p2->x;
p1->y += p2->y;
}
static inline void
point_sub(Point *p1, const Point *p2)
{
p1->x -= p2->x;
p1->y -= p2->y;
}
static inline real
point_dot(const Point *p1, const Point *p2)
{
return p1->x*p2->x + p1->y*p2->y;
}
static inline real
point_len(const Point *p)
{
return sqrt(p->x*p->x + p->y*p->y);
}
static inline void
point_scale(Point *p, real alpha)
{
p->x *= alpha;
p->y *= alpha;
}
static inline void
point_normalize(Point *p)
{
real len;
len = sqrt(p->x*p->x + p->y*p->y);
/* One could call it a bug to try normalizing a vector with
* len 0 and the result at least requires definition. But
* this is what makes the beziergon bounding box calculation
* work. What's the mathematical correct result of 0.0/0.0 ?
*/
if (len > 0.0) {
p->x /= len;
p->y /= len;
} else {
p->x = 0.0;
p->y = 0.0;
}
}
static inline void
point_rotate(Point *p1, const Point *p2)
{
p1->x = p1->x*p2->x - p1->y*p2->y;
p1->y = p1->x*p2->y + p1->y*p2->x;
}
static inline void
point_get_normed(Point *dst, const Point *src)
{
real len;
len = sqrt(src->x*src->x + src->y*src->y);
dst->x = src->x / len;
dst->y = src->y / len;
}
static inline void
point_get_perp(Point *dst, const Point *src)
{
/* dst = the src vector, rotated 90deg counter clowkwise. src *must* be
normalized before. */
dst->y = src->x;
dst->x = -src->y;
}
static inline void
point_copy(Point *dst, const Point *src)
{
/* Unfortunately, the compiler is not clever enough. And copying using
ints is faster if we don't computer based on the copied values, but
is slower if we have to make a FP reload afterwards.
point_copy() is meant for the latter case : then, the compiler is
able to shuffle and merge the FP loads. */
dst->x = src->x;
dst->y = src->y;
}
static inline void
point_add_scaled(Point *dst, const Point *src, real alpha)
{
/* especially useful if src is a normed vector... */
dst->x += alpha * src->x;
dst->y += alpha * src->y;
}
static inline void
point_copy_add_scaled(Point *dst, const Point *src,
const Point *vct, real alpha)
{
/* especially useful if vct is a normed vector... */
dst->x = src->x + (alpha * vct->x);
dst->y = src->y + (alpha * vct->y);
}
void point_convex(Point *dst, const Point *src1, const Point *src2, real alpha);
void rectangle_union(DiaRectangle *r1, const DiaRectangle *r2);
void rectangle_intersection(DiaRectangle *r1, const DiaRectangle *r2);
int rectangle_intersects(const DiaRectangle *r1, const DiaRectangle *r2);
int point_in_rectangle(const DiaRectangle* r, const Point *p);
int rectangle_in_rectangle(const DiaRectangle* outer, const DiaRectangle *inner);
void rectangle_add_point(DiaRectangle *r, const Point *p);
static inline gboolean
rectangle_equals (const DiaRectangle *r1, const DiaRectangle *r2)
{
return ( (r2->left == r1->left) &&
(r2->right == r1->right) &&
(r2->top == r1->top) &&
(r2->bottom == r1->bottom) );
}
static inline real
distance_point_point(const Point *p1, const Point *p2)
{
real dx = p1->x - p2->x;
real dy = p1->y - p2->y;
return sqrt(dx*dx + dy*dy);
}
static inline real
distance_point_point_manhattan(const Point *p1, const Point *p2)
{
real dx = p1->x - p2->x;
real dy = p1->y - p2->y;
return ABS(dx) + ABS(dy);
}
real distance_rectangle_point(const DiaRectangle *rect, const Point *point);
real distance_line_point(const Point *line_start, const Point *line_end,
real line_width, const Point *point);
real distance_polygon_point(const Point *poly, guint npoints,
real line_width, const Point *point);
/* bezier distance calculations */
real distance_bez_seg_point(const Point *b1, const BezPoint *b2,
real line_width, const Point *point);
real distance_bez_line_point(const BezPoint *b, guint npoints,
real line_width, const Point *point);
real distance_bez_shape_point(const BezPoint *b, guint npoints,
real line_width, const Point *point);
real distance_ellipse_point(const Point *centre, real width, real height,
real line_width, const Point *point);
void transform_length (real *length, const DiaMatrix *m);
void transform_point (Point *pt, const DiaMatrix *m);
void transform_bezpoint (BezPoint *bpt, const DiaMatrix *m);
real dot2(Point *p1, Point *p2);
void line_coef(real *a, real *b, real *c, Point *p1, Point *p2);
real line_to_point(real a, real b , real c, Point *p);
gboolean line_line_intersection (Point *crossing,
const Point *p1, const Point *p2,
const Point *p3, const Point *p4);
void point_perp(Point *p, real a, real b, real c, Point *perp);
gboolean fillet(Point *p1, Point *p2, Point *p3, Point *p4,
real r, Point *c, real *pa, real *aa);
int three_point_circle(const Point *p1, const Point *p2, const Point *p3,
Point* center, real* radius);
real point_cross(Point *p1, Point *p2);
Point calculate_object_edge(Point *objmid, Point *end, DiaObject *obj);
real dia_asin (real x);
real dia_acos (real x);
G_END_DECLS
#endif /* GEOMETRY_H */
|