File: boundingbox.c

package info (click to toggle)
dia 0.98%2Bgit20250827-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,064 kB
  • sloc: ansic: 155,731; xml: 14,062; python: 6,250; cpp: 3,635; sh: 447; perl: 137; makefile: 29
file content (672 lines) | stat: -rw-r--r-- 19,465 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/* Dia -- an diagram creation/manipulation program
 * Support for computing bounding boxes
 * Copyright (C) 2001 Cyrille Chepelov
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <config.h>

#include <math.h>
#include <string.h> /* memcmp() */

#include <glib.h>

#include "geometry.h"
#include "boundingbox.h"

/**
 * bernstein_develop:
 *
 * @p: x- or y-part of the four points
 * @A:
 * @B:
 * @C:
 * @D:
 *
 * Translates x- or y- part of bezier points to Bernstein polynom coefficients
 *
 * See: Foley et al., Computer Graphics, Bezier Curves or
 * http://en.wikipedia.org/wiki/B%C3%A9zier_curve
 */
void
bernstein_develop (const double  p[4],
                   double       *A,
                   double       *B,
                   double       *C,
                   double       *D)
{
  *A =   -p[0]+3*p[1]-3*p[2]+p[3];
  *B =  3*p[0]-6*p[1]+3*p[2];
  *C = -3*p[0]+3*p[1];
  *D =    p[0];
  /* if Q(u)=Sum(i=0..3)piBi(u) (Bi(u) being the Bernstein stuff),
     then Q(u)=Au^3+Bu^2+Cu+p[0]. */
}


/**
 * bezier_eval:
 * @p: x- or y-values of four points describing the bezier
 * @u: position on the curve [0 .. 1]
 *
 * Evaluates the Bernstein polynoms for a given position
 *
 * Returns: the evaluate x- or y-part of the point
 */
double
bezier_eval (const double p[4], double u)
{
  double A, B, C, D;
  bernstein_develop (p, &A, &B, &C, &D);
  return A * u * u * u + B * u * u + C * u + D;
}


/**
 * bezier_eval_tangent:
 * @p: x- or y-values of four points describing the bezier
 * @u: position on the curve between[0 .. 1]
 *
 * Calculates the tangent for a given point on a bezier curve
 *
 * Returns: the x- or y-part of the tangent vector
 */
double
bezier_eval_tangent (const double p[4], double u)
{
  double A, B, C, D;
  bernstein_develop (p, &A, &B, &C, &D);
  return 3 * A * u * u + 2 * B * u + C;
}


/**
 * bicubicbezier_extrema:
 * @p: x- or y-values of four points describing the bezier
 * @u: The position of the extrema [0 .. 1]
 *
 * Calculates the extrema of the given curve in x- or y-direction.
 *
 * Returns: The number of extrema found.
 */
static int
bicubicbezier_extrema (const double p[4], double u[2])
{
  double A, B, C, D, delta;

  bernstein_develop (p, &A, &B, &C, &D);
  delta = 4*B*B - 12*A*C;

  u[0] = u[1] = 0.0;
  if (delta < 0) {
    return 0;
  }

  /* just a quadratic contribution? */
  if (fabs (A) < 1e-6) {
    u[0] = -C / (2 * B);
    return 1;
  }

  u[0] = (-2*B + sqrt (delta)) / (6*A);
  if (delta == 0) {
    return 1;
  }
  u[1] = (-2*B - sqrt (delta)) / (6*A);
  return 2;
}


/**
 * add_arrow_rectangle:
 * @rect: The bounding box to adjust
 * @vertex: The end point of the arrow.
 * @normed_dir: The normalized direction of the arrow (i.e. 1 cm in the
 * direction the arrow points from)
 * @extra_long: ???
 * @extra_trans: ???
 *
 * Add to a bounding box the area covered by a standard arrow.
 */
static void
add_arrow_rectangle (DiaRectangle *rect,
                     const Point  *vertex,
                     const Point  *normed_dir,
                     double        extra_long,
                     double        extra_trans)
{
  Point vl, vt, pt;
  vl = *normed_dir;

  point_get_perp (&vt, &vl);
  point_copy_add_scaled (&pt, vertex, &vl, extra_long);
  point_add_scaled (&pt, &vt, extra_trans);
  rectangle_add_point (rect, &pt);
  point_add_scaled (&pt, &vt, -2.0 * extra_trans);
  rectangle_add_point (rect, &pt);
  point_add_scaled (&pt, &vl, -2.0 * extra_long);
  rectangle_add_point (rect, &pt);
  point_add_scaled (&pt, &vt, 2.0 * extra_trans);
  rectangle_add_point (rect, &pt);
}


/**
 * bicubicbezier2D_bbox:
 * @p0: start point
 * @p1: 1st control point
 * @p2: 2nd control point
 * @p3: end point
 * @extra: information about extra space from linewidth and arrow to add to
 *         the bounding box
 * @rect: The rectangle that the segment fits inside.
 *
 * Calculate the boundingbox for a 2D bezier curve segment.
 */
void
bicubicbezier2D_bbox (const Point        *p0,
                      const Point        *p1,
                      const Point        *p2,
                      const Point        *p3,
                      const PolyBBExtras *extra,
                      DiaRectangle       *rect)
{
  double x[4], y[4];
  Point vl, vt, p,tt;
  double *xy;
  int i, extr;
  double u[2];

  rect->left = rect->right = p0->x;
  rect->top = rect->bottom = p0->y;

  rectangle_add_point (rect, p3);
  /* start point */
  point_copy_add_scaled (&vl, p0, p1, -1);
  if (point_len (&vl) == 0) {
    point_copy_add_scaled (&vl, p0, p2, -1);
  }
  point_normalize (&vl);
  add_arrow_rectangle (rect,
                       p0,
                       &vl,
                       extra->start_long,
                       MAX (extra->start_trans, extra->middle_trans));

  /* end point */
  point_copy_add_scaled (&vl, p3, p2,-1);
  if (point_len (&vl) == 0) {
    point_copy_add_scaled (&vl, p3, p1, -1);
  }
  point_normalize (&vl);
  add_arrow_rectangle (rect,
                       p3,
                       &vl,
                       extra->end_long,
                       MAX (extra->end_trans, extra->middle_trans));

  /* middle part */
  x[0] = p0->x; x[1] = p1->x; x[2] = p2->x; x[3] = p3->x;
  y[0] = p0->y; y[1] = p1->y; y[2] = p2->y; y[3] = p3->y;

  for (xy = x; xy ; xy = (xy == x ? y : NULL) ) { /* sorry */
    extr = bicubicbezier_extrema (xy,u);
    for (i = 0; i < extr; i++) {
      if ((u[i] < 0) || (u[i] > 1)) {
        continue;
      }
      p.x = bezier_eval (x, u[i]);
      vl.x = bezier_eval_tangent (x, u[i]);
      p.y = bezier_eval (y, u[i]);
      vl.y = bezier_eval_tangent (y, u[i]);
      point_normalize (&vl);
      point_get_perp (&vt, &vl);

      point_copy_add_scaled (&tt, &p, &vt, extra->middle_trans);
      rectangle_add_point (rect, &tt);
      point_copy_add_scaled (&tt, &p, &vt, -extra->middle_trans);
      rectangle_add_point (rect, &tt);
    }
  }
}


/**
 * line_bbox:
 * @p1: One end of the line.
 * @p2: The other end of the line.
 * @extra: Extra information
 * @rect: The box that the line and extra stuff fits inside.
 *
 * Calculate the bounding box for a simple line.
 */
void
line_bbox (const Point        *p1,
           const Point        *p2,
           const LineBBExtras *extra,
           DiaRectangle       *rect)
{
  Point vl;

  rect->left = rect->right = p1->x;
  rect->top = rect->bottom = p1->y;

  rectangle_add_point (rect, p2); /* as a safety, so we don't need to care if it above or below p1 */

  point_copy_add_scaled (&vl, p1, p2, -1);
  point_normalize (&vl);
  add_arrow_rectangle (rect, p1, &vl, extra->start_long, extra->start_trans);
  point_scale (&vl, -1);
  add_arrow_rectangle (rect, p2, &vl, extra->end_long, extra->end_trans);
}


/**
 * ellipse_bbox:
 * @centre: The center point of the ellipse.
 * @width: The width of the ellipse.
 * @height: The height of the ellipse.
 * @extra: Extra information required.
 * @rect: The bounding box that the ellipse fits inside.
 *
 * Calculate the bounding box of an ellipse.
 */
void
ellipse_bbox (const Point           *centre,
              double                 width,
              double                 height,
              const ElementBBExtras *extra,
              DiaRectangle          *rect)
{
  DiaRectangle rin;
  rin.left = centre->x - width / 2;
  rin.right = centre->x + width / 2;
  rin.top = centre->y - height / 2;
  rin.bottom = centre->y + height / 2;

  rectangle_bbox (&rin, extra, rect);
}


/**
 * alloc_polybezier_space:
 * @numpoints: How many points of bezier to allocate space for.
 *
 * Allocate some scratch space to hold a big enough Bezier.
 * That space is not guaranteed to be preserved upon the next allocation
 * (in fact it's guaranteed it's not).
 *
 * Returns: Newly allocated array of points.
 */
static BezPoint *
alloc_polybezier_space (int numpoints)
{
  static int alloc_np = 0;
  static BezPoint *alloced = NULL;

  if (alloc_np < numpoints) {
    g_clear_pointer (&alloced, g_free);
    alloc_np = numpoints;
    alloced = g_new0 (BezPoint, numpoints);
  }

  return alloced;
}


/**
 * free_polybezier_space:
 * @points: Previously allocated list of points.
 *
 * Free the scratch space allocated above.
 *
 * Note: Doesn't actually free it, as alloc_polybezier_space does that.
 */
static void
free_polybezier_space (BezPoint *points)
{
  /* dummy */
}


/**
 * polyline_bbox:
 * @pts: Array of points.
 * @numpoints: Number of elements in `pts'.
 * @extra: Extra space information
 * @closed: Whether the polyline is closed or not.
 * @rect: (out caller-allocates): The bounding box that includes the points
 * and extra spacing.
 *
 * Calculate the boundingbox for a polyline.
 */
void
polyline_bbox (const Point        *pts,
               int                 numpoints,
               const PolyBBExtras *extra,
               gboolean            closed,
               DiaRectangle       *rect)
{
  /* It's much easier to re-use the Bezier code... */
  int i;
  BezPoint *bpts = alloc_polybezier_space (numpoints + 1);

  bpts[0].type = BEZ_MOVE_TO;
  bpts[0].p1 = pts[0];

  for (i = 1; i < numpoints; i++) {
    bpts[i].type = BEZ_LINE_TO;
    bpts[i].p1 = pts[i];
  }
  /* This one will be used only when closed==TRUE... */
  bpts[numpoints].type = BEZ_LINE_TO;
  bpts[numpoints].p1 = pts[0];

  polybezier_bbox (bpts, numpoints + (closed ? 1 : 0), extra, closed, rect);
  free_polybezier_space (bpts);
}


/**
 * polybezier_bbox:
 * @pts: The bezier points
 * @numpoints: The number of elements in `pts'
 * @extra: Extra spacing information.
 * @closed: True if the bezier points form a closed line.
 * @rect: Return value: The enclosing rectangle will be stored here.
 *
 * Calculate a bounding box for a set of bezier points.
 */
void
polybezier_bbox (const BezPoint     *pts,
                 int                 numpoints,
                 const PolyBBExtras *extra,
                 gboolean            closed,
                 DiaRectangle       *rect)
{
  Point vx, vn, vsc, vp;
  int i, prev, next;
  DiaRectangle rt;
  PolyBBExtras bextra, start_bextra, end_bextra, full_bextra;
  LineBBExtras lextra, start_lextra, end_lextra, full_lextra;
  gboolean start, end;

  vp.x = 0;
  vp.y = 0;

  g_return_if_fail (pts[0].type == BEZ_MOVE_TO);

  rect->left = rect->right = pts[0].p1.x;
  rect->top = rect->bottom = pts[0].p1.y;

  /* First, we build derived BBExtras structures, so we have something to feed
     the primitives. */
  if (!closed) {
    start_lextra.start_long = extra->start_long;
    start_lextra.start_trans = MAX (extra->start_trans, extra->middle_trans);
    start_lextra.end_long = 0;
    start_lextra.end_trans = extra->middle_trans;

    end_lextra.start_long = 0;
    end_lextra.start_trans = extra->middle_trans;
    end_lextra.end_long = extra->end_long;
    end_lextra.end_trans = MAX (extra->end_trans, extra->middle_trans);
  }

  full_lextra.start_long = extra->start_long;
  full_lextra.start_trans = MAX (extra->start_trans, extra->middle_trans);
  full_lextra.end_long = extra->end_long;
  full_lextra.end_trans = MAX (extra->end_trans, extra->middle_trans);
  full_bextra.start_long = extra->start_long;
  full_bextra.start_trans = MAX (extra->start_trans, extra->middle_trans);
  full_bextra.middle_trans = extra->middle_trans;
  full_bextra.end_long = extra->end_long;
  full_bextra.end_trans = MAX (extra->end_trans, extra->middle_trans);

  if (!closed) {
    lextra.start_long = 0;
    lextra.start_trans = extra->middle_trans;
    lextra.end_long = 0;
    lextra.end_trans = extra->middle_trans;

    start_bextra.start_long = extra->start_long;
    start_bextra.start_trans = extra->start_trans;
    start_bextra.middle_trans = extra->middle_trans;
    start_bextra.end_long = 0;
    start_bextra.end_trans = extra->middle_trans;

    end_bextra.start_long = 0;
    end_bextra.start_trans = extra->middle_trans;
    end_bextra.middle_trans = extra->middle_trans;
    end_bextra.end_long = extra->end_long;
    end_bextra.end_trans = extra->end_trans;
  }

  bextra.start_long = 0;
  bextra.start_trans = extra->middle_trans;
  bextra.middle_trans = extra->middle_trans;
  bextra.end_long = 0;
  bextra.end_trans = extra->middle_trans;


  for (i = 1; i < numpoints; i++) {
    next = (i + 1) % numpoints;
    prev = (i - 1) % numpoints;
    if (closed && (next == 0)) {
      next = 1;
    }
    if (closed && (prev == 0)) {
      prev = numpoints - 1;
    }

    /* We have now:
       i = index of current vertex.
       prev,next: index of previous/next vertices (of the control polygon)

       We want:
        vp, vx, vn: the previous, current and next vertices;
        start, end: TRUE if we're at an end of poly (then, vp and/or vn are not
        valid, respectively).

       Some values *will* be recomputed a few times across iterations (but stored in
       different boxes). Either gprof says it's a real problem, or gcc finally gets
       a clue.
    */

    if (pts[i].type == BEZ_MOVE_TO) {
      continue;
    }

    switch (pts[i].type) {
      case BEZ_LINE_TO:
        point_copy (&vx, &pts[i].p1);
        switch (pts[prev].type) {
          case BEZ_MOVE_TO:
          case BEZ_LINE_TO:
            point_copy (&vsc, &pts[prev].p1);
            point_copy (&vp, &pts[prev].p1);
            break;
          case BEZ_CURVE_TO:
            point_copy (&vsc, &pts[prev].p3);
            point_copy (&vp, &pts[prev].p3);
            break;
          default:
            g_return_if_reached ();
        }
        break;
      case BEZ_CURVE_TO:
        point_copy (&vx, &pts[i].p3);
        point_copy (&vp, &pts[i].p2);
        switch (pts[prev].type) {
          case BEZ_MOVE_TO:
          case BEZ_LINE_TO:
            point_copy (&vsc, &pts[prev].p1);
            break;
          case BEZ_CURVE_TO:
            point_copy (&vsc, &pts[prev].p3);
            break;
          default:
            g_return_if_reached ();
        } /* vsc is the start of the curve. */

        break;
      case BEZ_MOVE_TO:
      default:
        g_return_if_reached ();
        break;
    }
    start = (pts[prev].type == BEZ_MOVE_TO);
    end = (pts[next].type == BEZ_MOVE_TO);
    point_copy (&vn, &pts[next].p1); /* whichever type pts[next] is. */

    /* Now, we know about a few vertices around the one we're dealing with.
       Depending on the shape of the (previous,current) segment, and whether
       it's a middle or end segment, we'll be doing different stuff. */
    if (closed) {
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox (&vsc, &vx, &full_lextra, &rt);
      } else {
        bicubicbezier2D_bbox (&vsc,
                              &pts[i].p1,
                              &pts[i].p2,
                              &pts[i].p3,
                              &bextra,
                              &rt);
      }
    } else if (start) {
      if (pts[i].type == BEZ_LINE_TO) {
        if (end) {
          line_bbox (&vsc, &vx, &full_lextra, &rt);
        } else {
          line_bbox (&vsc, &vx, &start_lextra, &rt);
        }
      } else { /* BEZ_MOVE_TO */
        if (end) {
          bicubicbezier2D_bbox (&vsc,
                                &pts[i].p1,
                                &pts[i].p2,
                                &pts[i].p3,
                                &full_bextra,
                                &rt);
        } else {
          bicubicbezier2D_bbox (&vsc,
                                &pts[i].p1,
                                &pts[i].p2,
                                &pts[i].p3,
                                &start_bextra,
                                &rt);
        }
      }
    } else if (end) { /* end but not start. Not closed anyway. */
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox (&vsc, &vx, &end_lextra, &rt);
      } else {
        bicubicbezier2D_bbox (&vsc,
                              &pts[i].p1,
                              &pts[i].p2,
                              &pts[i].p3,
                              &end_bextra,
                              &rt);
      }
    } else { /* normal case : middle segment (not closed shape). */
      if (pts[i].type == BEZ_LINE_TO) {
        line_bbox (&vsc, &vx, &lextra, &rt);
      } else {
        bicubicbezier2D_bbox (&vsc,
                              &pts[i].p1,
                              &pts[i].p2,
                              &pts[i].p3,
                              &bextra,
                              &rt);
      }
    }
    rectangle_union (rect, &rt);

    /* The following code enlarges a little the bounding box (if necessary) to
       account with the "pointy corners" X (and PS) add when DIA_LINE_JOIN_MITER mode is
       in force. */

    if (!end) { /* only the last segment might not produce overshoot. */
      Point vpx,vxn;
      double co,alpha;

      point_copy_add_scaled (&vpx, &vx, &vp, -1);
      point_normalize (&vpx);
      point_copy_add_scaled (&vxn, &vn, &vx, -1);
      point_normalize (&vxn);

      co = point_dot (&vpx, &vxn);
      alpha = dia_acos (-co);
      if (co > -0.9816) { /* 0.9816 = cos(11deg) */
        /* we have a pointy join. */
        double overshoot;
        Point vovs,pto;

        if (alpha > 0.0 && alpha < M_PI)
          overshoot = extra->middle_trans / sin (alpha / 2.0);
        else /* perpendicular? */
          overshoot = extra->middle_trans;

        point_copy_add_scaled (&vovs, &vpx, &vxn, -1);
        point_normalize (&vovs);
        point_copy_add_scaled (&pto, &vx, &vovs, overshoot);

        rectangle_add_point (rect, &pto);
      } else {
        /* we don't have a pointy join. */
#if 0
	/* so nothing to do really - this code would be growing the
	 * bounding box arbitrarily. See e.g with bezier-extreme.dia
	 */
        Point vpxt,vxnt,tmp;

        point_get_perp(&vpxt,&vpx);
        point_get_perp(&vxnt,&vxn);

        point_copy_add_scaled(&tmp,&vx,&vpxt,1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vpxt,-1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vxnt,1);
        rectangle_add_point(rect,&tmp);
        point_copy_add_scaled(&tmp,&vx,&vxnt,-1);
        rectangle_add_point(rect,&tmp);
#endif
      }
    }
  }
}


/**
 * rectangle_bbox:
 * @rin: A rectangle to find bbox for.
 * @extra: Extra information required to find bbox.
 * @rout: Return value: The enclosing bounding box.
 *
 * Figure out a bounding box for a rectangle (fairly simple:)
 */
void
rectangle_bbox (const DiaRectangle    *rin,
                const ElementBBExtras *extra,
                DiaRectangle          *rout)
{
  rout->left = rin->left - extra->border_trans;
  rout->top = rin->top - extra->border_trans;
  rout->right = rin->right + extra->border_trans;
  rout->bottom = rin->bottom + extra->border_trans;
}