1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
* LIB/ZALLOC.C - mostly self contained zero-overhead memory pool/allocation
* subsystem.
*
* This subsystem implements memory pools and memory allocation
* routines. It uses pagealloc() for a low level allocator and
* malloc() for the MemPool structures. The idea is to (a) prevent
* fragmentation and (b) allow pools to be unmapped from the VM space
* when no longer needed.
*
* Pools are managed via a linked list of 'free' areas. Allocating
* memory creates holes in the freelist, freeing memory fills them.
* Since the freelist consists only of free memory areas, it is possible
* to allocate all the memory in a pool without incuring any structural
* overhead.
*
* The system works best when allocating similarly-sized chunks of
* memory.
*
* (c)Copyright 1997, Matthew Dillon, All Rights Reserved. Refer to
* the COPYRIGHT file in the base directory of this distribution
* for specific rights granted.
*/
#include "defs.h"
#define POOLSIZE 65536
#define MEMNODE_SIZE_MASK ((sizeof(char *) == 4) ? 7 : 15)
Prototype void *nzalloc(MemPool **mpool, int bytes);
Prototype void *zalloc(MemPool **mpool, int bytes);
Prototype char *zallocStr(MemPool **pmp, const char *s);
Prototype char *zallocStrTrim(MemPool **pmp, const char *s, int l);
Prototype void zfree(MemPool **mpool, void *ptr, int bytes);
Prototype void zfreeStr(MemPool **pmp, char **ps);
Prototype void allocPool(MemPool **mpool, int bytes);
Prototype void freePool(MemPool **mpool);
MemPool *initPool(int bytes);
void *
nzalloc(MemPool **pmp, int bytes)
{
MemPool *mp;
/* 8 or 16-byte alignment required, depending on the pointer size */
bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
while ((mp = *pmp) != NULL) {
if (bytes <= mp->mp_Size - mp->mp_Used) {
MemNode **pmn;
MemNode *mn;
for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
if (bytes <= mn->mr_Bytes) {
/*
* Cut a chunk of memory out of the beginning of this
* block and fixup the link appropriately.
*/
char *ptr = (char *)mn;
if (mn->mr_Bytes == bytes) {
*pmn = mn->mr_Next;
} else {
mn = (MemNode *)((char *)mn + bytes);
mn->mr_Next = ((MemNode *)ptr)->mr_Next;
mn->mr_Bytes = ((MemNode *)ptr)->mr_Bytes - bytes;
*pmn = mn;
}
mp->mp_Used += bytes;
return(ptr);
}
}
}
pmp = &mp->mp_Next;
}
/*
* Failed to locate sufficient memory, allocate another
* pool.
*/
allocPool(pmp, ((bytes < POOLSIZE) ? POOLSIZE : bytes));
return(zalloc(pmp, bytes));
}
void *
zalloc(MemPool **pmp, int bytes)
{
void *ptr = nzalloc(pmp, bytes);
bzero(ptr, bytes);
return(ptr);
}
char *
zallocStr(MemPool **pmp, const char *s)
{
char *r = zalloc(pmp, strlen(s) + 1);
strcpy(r, s);
return(r);
}
char *
zallocStrTrim(MemPool **pmp, const char *s, int l)
{
char *r;
while (l && (*s == ' ' || *s == '\t')) {
++s;
--l;
}
--l;
while (l >= 0 &&
(s[l] == '\r' || s[l] == '\n' || s[l] == ' ' || s[l] == '\t')
) {
--l;
}
++l;
r = zalloc(pmp, l + 1);
bcopy(s, r, l);
r[l] = 0;
return(r);
}
void
zfree(MemPool **pmp, void *ptr, int bytes)
{
MemPool *mp;
/* 8 or 16-byte alignment required, depending on the pointer size */
bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
while ((mp = *pmp) != NULL) {
if ((char *)ptr >= (char *)mp->mp_Base && (char *)ptr < (char *)mp->mp_Base + mp->mp_Size) {
MemNode **pmn;
MemNode *mn;
mp->mp_Used -= bytes;
for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
/*
* If area between last node and current node
* - check range
* - check merge with next area
* - check merge with previous area
*/
if ((char *)ptr <= (char *)mn) {
/*
* range check
*/
if ((char *)ptr + bytes > (char *)mn) {
syslog(LOG_CRIT, "zfree(%08lx,%d) failed1, corrupt memlist", (long)ptr, bytes);
exit(1);
}
/*
* merge against next area or create independant area
*/
if ((char *)ptr + bytes == (char *)mn) {
((MemNode *)ptr)->mr_Next = mn->mr_Next;
((MemNode *)ptr)->mr_Bytes= bytes + mn->mr_Bytes;
} else {
((MemNode *)ptr)->mr_Next = mn;
((MemNode *)ptr)->mr_Bytes= bytes;
}
*pmn = mn = (MemNode *)ptr;
/*
* merge against previous area (if there is a previous
* area).
*/
if (pmn != &mp->mp_First) {
if ((char *)pmn + ((MemNode *)pmn)->mr_Bytes == (char *)ptr) {
((MemNode *)pmn)->mr_Next = mn->mr_Next;
((MemNode *)pmn)->mr_Bytes += mn->mr_Bytes;
}
}
return;
}
if ((char *)ptr < (char *)mn + mn->mr_Bytes) {
syslog(LOG_CRIT, "zfree(%08lx,%d) failed2, corrupt memlist", (long)ptr, bytes);
exit(1);
}
}
/*
* We are beyond the last MemNode, append new MemNode. Merge against
* previous area if possible.
*/
((MemNode *)ptr)->mr_Next = NULL;
((MemNode *)ptr)->mr_Bytes = bytes;
*pmn = mn = (MemNode *)ptr;
return;
}
pmp = &mp->mp_Next;
}
syslog(LOG_CRIT, "zfree(%08lx,%d) failed3, corrupt memlist", (long)ptr, bytes);
exit(1);
}
void
zfreeStr(MemPool **pmp, char **ps)
{
if (*ps) {
zfree(pmp, *ps, strlen(*ps) + 1);
*ps = NULL;
}
}
void
allocPool(MemPool **pmp, int bytes)
{
MemPool *mp = calloc(sizeof(MemPool), 1);
mp->mp_Next = *pmp;
mp->mp_Base = pagealloc(&mp->mp_Size, bytes);
mp->mp_First = mp->mp_Base;
mp->mp_First->mr_Next = NULL;
mp->mp_First->mr_Bytes = mp->mp_Size;
*pmp = mp;
}
void
freePool(MemPool **pmp)
{
MemPool *mp;
while ((mp = *pmp) != NULL) {
*pmp = mp->mp_Next;
pagefree(mp->mp_Base, mp->mp_Size);
free(mp);
}
}
|