File: test_interface.py

package info (click to toggle)
dials 3.25.0%2Bdfsg3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,112 kB
  • sloc: python: 134,740; cpp: 34,526; makefile: 160; sh: 142
file content (582 lines) | stat: -rw-r--r-- 18,674 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
from __future__ import annotations

import random

import pytest


def test_split_blocks_1_frame():
    from dials.algorithms.integration.integrator import JobList
    from dials.array_family import flex

    r = flex.reflection_table()
    r["value1"] = flex.double()
    r["value2"] = flex.int()
    r["value3"] = flex.double()
    r["bbox"] = flex.int6()
    r["id"] = flex.int()
    expected = []
    for i in range(100):
        x0 = random.randint(0, 100)
        x1 = x0 + random.randint(1, 10)
        y0 = random.randint(0, 100)
        y1 = y0 + random.randint(1, 10)
        z0 = random.randint(0, 100)
        z1 = z0 + random.randint(1, 10)
        v1 = random.uniform(0, 100)
        v2 = random.randint(0, 100)
        v3 = random.uniform(0, 100)
        r.append(
            {
                "id": 0,
                "value1": v1,
                "value2": v2,
                "value3": v3,
                "bbox": (x0, x1, y0, y1, z0, z1),
            }
        )
        for z in range(z0, z1):
            expected.append(
                {
                    "id": 0,
                    "value1": v1,
                    "value2": v2,
                    "value3": v3,
                    "bbox": (x0, x1, y0, y1, z, z + 1),
                    "partial_id": i,
                }
            )

    jobs = JobList()
    jobs.add((0, 1), (0, 111), 1, 0)

    jobs.split(r)
    assert len(r) == len(expected)
    EPS = 1e-7
    for r1, r2 in zip(r.rows(), expected):
        assert r1["bbox"] == r2["bbox"]
        assert r1["partial_id"] == r2["partial_id"]
        assert abs(r1["value1"] - r2["value1"]) < EPS
        assert r1["value2"] == r2["value2"]
        assert abs(r1["value3"] - r2["value3"]) < EPS


def test_split_blocks_non_overlapping():
    from scitbx.array_family import shared

    from dials.algorithms.integration.integrator import JobList
    from dials.array_family import flex

    blocks = shared.tiny_int_2(
        [
            (0, 10),
            (10, 20),
            (20, 30),
            (30, 35),
            (35, 40),
            (40, 50),
            (50, 60),
            (60, 70),
            (70, 80),
            (80, 90),
            (90, 100),
            (100, 110),
        ]
    )

    jobs = JobList((0, 1), blocks)

    r = flex.reflection_table()
    r["value1"] = flex.double()
    r["value2"] = flex.int()
    r["value3"] = flex.double()
    r["bbox"] = flex.int6()
    r["id"] = flex.int()
    expected = []
    for i in range(100):
        x0 = random.randint(0, 100)
        x1 = x0 + random.randint(1, 10)
        y0 = random.randint(0, 100)
        y1 = y0 + random.randint(1, 10)
        z0 = random.randint(0, 100)
        z1 = z0 + random.randint(1, 10)
        v1 = random.uniform(0, 100)
        v2 = random.randint(0, 100)
        v3 = random.uniform(0, 100)
        r.append(
            {
                "id": 0,
                "value1": v1,
                "value2": v2,
                "value3": v3,
                "bbox": (x0, x1, y0, y1, z0, z1),
            }
        )

        for j in range(len(blocks)):
            b0 = blocks[j][0]
            b1 = blocks[j][1]
            if (
                (z0 >= b0 and z1 <= b1)
                or (z0 < b1 and z1 >= b1)
                or (z0 < b0 and z1 > b0)
            ):
                z00 = max(b0, z0)
                z11 = min(b1, z1)
                expected.append(
                    {
                        "id": 0,
                        "value1": v1,
                        "value2": v2,
                        "value3": v3,
                        "bbox": (x0, x1, y0, y1, z00, z11),
                        "partial_id": i,
                    }
                )

    jobs.split(r)
    assert len(r) == len(expected)
    EPS = 1e-7
    for r1, r2 in zip(r.rows(), expected):
        assert r1["bbox"] == r2["bbox"]
        assert r1["partial_id"] == r2["partial_id"]
        assert abs(r1["value1"] - r2["value1"]) < EPS
        assert r1["value2"] == r2["value2"]
        assert abs(r1["value3"] - r2["value3"]) < EPS


def test_split_blocks_overlapping():
    from scitbx.array_family import shared

    from dials.algorithms.integration.integrator import JobList
    from dials.array_family import flex

    blocks = shared.tiny_int_2(
        [
            (0, 10),
            (5, 15),
            (10, 20),
            (15, 25),
            (20, 30),
            (25, 35),
            (30, 40),
            (35, 45),
            (40, 50),
            (45, 55),
            (50, 60),
            (55, 65),
            (60, 70),
            (65, 75),
            (70, 80),
            (75, 85),
            (80, 90),
            (85, 95),
            (90, 100),
            (95, 105),
            (100, 110),
        ]
    )

    jobs = JobList((0, 1), blocks)

    r = flex.reflection_table()
    r["value1"] = flex.double()
    r["value2"] = flex.int()
    r["value3"] = flex.double()
    r["bbox"] = flex.int6()
    r["id"] = flex.int()
    expected = []
    for i in range(100):
        x0 = random.randint(0, 100)
        x1 = x0 + random.randint(1, 10)
        y0 = random.randint(0, 100)
        y1 = y0 + random.randint(1, 10)
        z0 = random.randint(0, 90)
        z1 = z0 + random.randint(1, 20)
        v1 = random.uniform(0, 100)
        v2 = random.randint(0, 100)
        v3 = random.uniform(0, 100)
        r.append(
            {
                "id": 0,
                "value1": v1,
                "value2": v2,
                "value3": v3,
                "bbox": (x0, x1, y0, y1, z0, z1),
            }
        )
        expected.append(
            {
                "id": 0,
                "value1": v1,
                "value2": v2,
                "value3": v3,
                "bbox": (x0, x1, y0, y1, z0, z1),
            }
        )

    jobs.split(r)
    assert len(r) > 100
    for r1 in r.rows():
        v1 = r1["value1"]
        v2 = r1["value2"]
        v3 = r1["value3"]
        bbox = r1["bbox"]
        pid = r1["partial_id"]

        z0 = bbox[4]
        z1 = bbox[5]
        success = False
        for i in range(len(blocks)):
            b0 = blocks[i][0]
            b1 = blocks[i][1]
            if z0 >= b0 and z1 <= b1:
                success = True
                break
        assert success

        v11 = expected[pid]["value1"]
        v22 = expected[pid]["value2"]
        v33 = expected[pid]["value3"]
        bb = expected[pid]["bbox"]
        assert v11 == v1
        assert v22 == v2
        assert v33 == v3
        assert bb[0] == bbox[0]
        assert bb[1] == bbox[1]
        assert bb[2] == bbox[2]
        assert bb[3] == bbox[3]


def test_reflection_manager():
    from dials.array_family import flex

    reflections = flex.reflection_table()
    reflections["panel"] = flex.size_t()
    reflections["bbox"] = flex.int6()
    reflections["miller_index"] = flex.miller_index()
    reflections["s1"] = flex.vec3_double()
    reflections["xyzcal.px"] = flex.vec3_double()
    reflections["xyzcal.mm"] = flex.vec3_double()
    reflections["entering"] = flex.bool()
    reflections["id"] = flex.int()
    reflections["flags"] = flex.size_t()

    width = 1000
    height = 1000
    nrefl = 10000
    array_range = (0, 130)
    block_size = 20
    block_overlap = 10

    random.seed(0)
    processed = [[] for i in range(12)]
    for i in range(nrefl):
        x0 = random.randint(0, width - 10)
        y0 = random.randint(0, height - 10)
        zs = random.randint(2, 9)
        x1 = x0 + random.randint(2, 10)
        y1 = y0 + random.randint(2, 10)
        for k, j in enumerate([10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]):
            m = k + i * 12
            pos = random.choice(["left", "right", "centre"])
            if pos == "left":
                z0 = j - zs
                z1 = j
            elif pos == "right":
                z0 = j
                z1 = j + zs
            else:
                z0 = j - zs // 2
                z1 = j + zs // 2
            bbox = (x0, x1, y0, y1, z0, z1)
            reflections.append(
                {
                    "panel": random.randint(0, 1),
                    "bbox": bbox,
                    "flags": flex.reflection_table.flags.reference_spot,
                }
            )
            processed[k].append(m)

        # Add reflection to ignore
        # zc = random.choice([10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120])
        # z0 = zc - 11
        # z1 = zc + 11
        # bbox = (x0, x1, y0, y1, z0, z1)
        # reflections.append({
        #   "panel" : randint(0,1),
        #   "bbox" : bbox,
        #   "flags" : flex.reflection_table.flags.reference_spot
        # })

    from dials.algorithms.integration.integrator import JobList, ReflectionManager

    jobs = JobList()
    jobs.add((0, 1), array_range, block_size, block_overlap)

    # Create the executor
    executor = ReflectionManager(jobs, reflections)

    # Ensure the tasks make sense
    jobs = [executor.job(i) for i in range(len(executor))]
    assert len(executor) == 12
    assert not executor.finished()
    assert len(jobs) == 12
    assert jobs[0].frames() == (0, 20)
    assert jobs[1].frames() == (10, 30)
    assert jobs[2].frames() == (20, 40)
    assert jobs[3].frames() == (30, 50)
    assert jobs[4].frames() == (40, 60)
    assert jobs[5].frames() == (50, 70)
    assert jobs[6].frames() == (60, 80)
    assert jobs[7].frames() == (70, 90)
    assert jobs[8].frames() == (80, 100)
    assert jobs[9].frames() == (90, 110)
    assert jobs[10].frames() == (100, 120)
    assert jobs[11].frames() == (110, 130)

    # Get the task specs
    data0 = executor.split(0)
    data1 = executor.split(1)
    data2 = executor.split(2)
    data3 = executor.split(3)
    data4 = executor.split(4)
    data5 = executor.split(5)
    data6 = executor.split(6)
    data7 = executor.split(7)
    data8 = executor.split(8)
    data9 = executor.split(9)
    data10 = executor.split(10)
    data11 = executor.split(11)
    assert len(data0) == len(processed[0])
    assert len(data1) == len(processed[1])
    assert len(data2) == len(processed[2])
    assert len(data3) == len(processed[3])
    assert len(data4) == len(processed[4])
    assert len(data5) == len(processed[5])
    assert len(data6) == len(processed[6])
    assert len(data7) == len(processed[7])
    assert len(data8) == len(processed[8])
    assert len(data9) == len(processed[9])
    assert len(data10) == len(processed[10])
    assert len(data11) == len(processed[11])

    # Add some results
    data0["data"] = flex.double(len(data0), 1)
    data1["data"] = flex.double(len(data1), 2)
    data2["data"] = flex.double(len(data2), 3)
    data3["data"] = flex.double(len(data3), 4)
    data4["data"] = flex.double(len(data4), 5)
    data5["data"] = flex.double(len(data5), 6)
    data6["data"] = flex.double(len(data6), 7)
    data7["data"] = flex.double(len(data7), 8)
    data8["data"] = flex.double(len(data8), 9)
    data9["data"] = flex.double(len(data9), 10)
    data10["data"] = flex.double(len(data10), 11)
    data11["data"] = flex.double(len(data11), 12)

    # Accumulate the data again
    assert not executor.finished()
    executor.accumulate(0, data0)
    executor.accumulate(1, data1)
    executor.accumulate(2, data2)
    executor.accumulate(3, data3)
    executor.accumulate(4, data4)
    executor.accumulate(5, data5)
    executor.accumulate(6, data6)
    executor.accumulate(7, data7)
    executor.accumulate(8, data8)
    executor.accumulate(9, data9)
    executor.accumulate(10, data10)
    executor.accumulate(11, data11)
    assert executor.finished()

    # Get results and check they're as expected
    data = executor.data()
    result = data["data"]
    for i in range(len(processed)):
        for j in range(len(processed[i])):
            assert result[processed[i][j]] == i + 1

    # Test passed


@pytest.mark.parametrize("nproc", [1, 2])
def test_integrator_3d(dials_data, nproc):
    from math import pi

    from dxtbx.model.experiment_list import ExperimentListFactory

    from dials.algorithms.profile_model.gaussian_rs import Model
    from dials.array_family import flex

    path = dials_data("centroid_test_data", pathlib=True) / "experiments.json"

    exlist = ExperimentListFactory.from_json_file(path)
    exlist[0].profile = Model(
        None, n_sigma=3, sigma_b=0.024 * pi / 180.0, sigma_m=0.044 * pi / 180.0
    )

    rlist = flex.reflection_table.from_predictions(exlist[0])
    rlist["id"] = flex.int(len(rlist), 0)
    rlist.compute_bbox(exlist)
    rlist.compute_zeta_multi(exlist)
    rlist.compute_d(exlist)

    from libtbx.phil import parse

    from dials.algorithms.integration.integrator import Integrator3D, phil_scope

    params = phil_scope.fetch(
        parse(
            """
    integration.block.size=%d
    integration.mp.nproc=%d
    integration.profile_fitting=False
  """
            % (5, nproc)
        )
    ).extract()

    integrator = Integrator3D(exlist, rlist, params)
    integrator.integrate()


def test_summation(dials_data):
    from math import pi

    from dxtbx.model.experiment_list import ExperimentListFactory

    from dials.algorithms.profile_model.gaussian_rs import Model
    from dials.array_family import flex

    path = dials_data("centroid_test_data", pathlib=True) / "experiments.json"

    exlist = ExperimentListFactory.from_json_file(path)
    exlist[0].profile = Model(
        None, n_sigma=3, sigma_b=0.024 * pi / 180.0, sigma_m=0.044 * pi / 180.0
    )

    rlist = flex.reflection_table.from_predictions(exlist[0])
    rlist["id"] = flex.int(len(rlist), 0)

    def integrate(integrator_type, rlist):
        from libtbx.phil import parse

        from dials.algorithms.integration.integrator import create_integrator
        from dials.algorithms.integration.integrator import (
            phil_scope as master_phil_scope,
        )

        rlist = rlist.copy()

        phil_scope = parse(
            f"""
      integration.background.algorithm=null
      integration.intensity.algorithm=sum
      integration.intensity.sum.integrator={integrator_type}
      integration.block.size=0.5
      integration.profile_fitting=False
    """
        )

        params = master_phil_scope.fetch(source=phil_scope).extract()

        integrator = create_integrator(params, exlist, rlist)

        result = integrator.integrate()
        return result

    from libtbx.test_utils import approx_equal

    def approx_equal_dict(a, b, k):
        return approx_equal(a[k], b[k])

    # Do summation by all different methods
    result1 = integrate("3d", rlist)
    result2 = integrate("flat3d", rlist)
    result3 = integrate("2d", rlist)
    result4 = integrate("single2d", rlist)
    assert len(result1) >= len(rlist)
    assert len(result2) >= len(rlist)
    assert len(result3) >= len(rlist)
    assert len(result4) >= len(rlist)

    # result1 and result2 should be the same
    assert len(result1) == len(result2)
    for r1, r2 in zip(result1.rows(), result2.rows()):
        assert r1["partial_id"] == r2["partial_id"]
        assert r1["bbox"] == r2["bbox"]
        assert r1["entering"] == r2["entering"]
        assert r1["flags"] == r2["flags"]
        assert r1["id"] == r2["id"]
        assert r1["miller_index"] == r2["miller_index"]
        assert r1["panel"] == r2["panel"]
        assert approx_equal_dict(r1, r2, "d")
        assert approx_equal_dict(r1, r2, "intensity.sum.value")
        assert approx_equal_dict(r1, r2, "intensity.sum.variance")
        assert approx_equal_dict(r1, r2, "lp")
        assert approx_equal_dict(r1, r2, "partiality")
        assert approx_equal_dict(r1, r2, "s1")
        assert approx_equal_dict(r1, r2, "xyzcal.mm")
        assert approx_equal_dict(r1, r2, "xyzcal.px")
        assert approx_equal_dict(r1, r2, "zeta")

    # result3 and result4 should be the same
    assert len(result3) == len(result4)
    for r3, r4 in zip(result3.rows(), result4.rows()):
        assert r3["partial_id"] == r4["partial_id"]
        assert r3["bbox"] == r4["bbox"]
        assert r3["entering"] == r4["entering"]
        assert r3["flags"] == r4["flags"]
        assert r3["id"] == r4["id"]
        assert r3["miller_index"] == r4["miller_index"]
        assert r3["panel"] == r4["panel"]
        assert approx_equal_dict(r3, r4, "d")
        assert approx_equal_dict(r3, r4, "intensity.sum.value")
        assert approx_equal_dict(r3, r4, "intensity.sum.variance")
        assert approx_equal_dict(r3, r4, "lp")
        assert approx_equal_dict(r3, r4, "partiality")
        assert approx_equal_dict(r3, r4, "s1")
        assert approx_equal_dict(r3, r4, "xyzcal.mm")
        assert approx_equal_dict(r3, r4, "xyzcal.px")
        assert approx_equal_dict(r3, r4, "xyzobs.px.value")
        assert approx_equal_dict(r3, r4, "xyzobs.px.variance")
        assert approx_equal_dict(r3, r4, "zeta")

    # result3 should add up to result1
    assert len(result3) >= len(result1)
    expected1 = rlist.copy()
    expected1["intensity.sum.value"] = flex.double(len(rlist), 0)
    expected1["intensity.sum.variance"] = flex.double(len(rlist), 0)
    for r1 in result1.rows():
        pid = r1["partial_id"]
        r2 = expected1[pid]
        assert r1["entering"] == r2["entering"]
        assert r1["id"] == r2["id"]
        assert r1["miller_index"] == r2["miller_index"]
        assert r1["panel"] == r2["panel"]
        assert approx_equal_dict(r1, r2, "s1")
        assert approx_equal_dict(r1, r2, "xyzcal.mm")
        assert approx_equal_dict(r1, r2, "xyzcal.px")
        expected1["intensity.sum.value"][pid] += r1["intensity.sum.value"]
        expected1["intensity.sum.variance"][pid] += r1["intensity.sum.variance"]
    expected3 = rlist.copy()
    expected3["intensity.sum.value"] = flex.double(len(rlist), 0)
    expected3["intensity.sum.variance"] = flex.double(len(rlist), 0)
    for r1 in result3.rows():
        pid = r1["partial_id"]
        r2 = expected3[pid]
        assert r1["entering"] == r2["entering"]
        assert r1["id"] == r2["id"]
        assert r1["miller_index"] == r2["miller_index"]
        assert r1["panel"] == r2["panel"]
        assert approx_equal_dict(r1, r2, "s1")
        assert approx_equal_dict(r1, r2, "xyzcal.mm")
        assert approx_equal_dict(r1, r2, "xyzcal.px")
        expected3["intensity.sum.value"][pid] += r1["intensity.sum.value"]
        expected3["intensity.sum.variance"][pid] += r1["intensity.sum.variance"]
    for r1, r3 in zip(expected1.rows(), expected3.rows()):
        assert approx_equal_dict(r1, r3, "intensity.sum.value")
        assert approx_equal_dict(r1, r3, "intensity.sum.variance")